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Abstract

This paper studies price bargaining when both parties have digit bias when processing num-
bers, and shows a positive welfare implication of digit bias in bargaining. The empirical analysis
focuses on the auto finance market in the U.S., using a large data set of 35 million auto loans.
Incorporating digit bias in bargaining is motivated by several intriguing observations. The
scheduled monthly payments of auto loans bunch at $9- and $0-ending digits, especially over
$100 marks. In addition, $9-ending loans carry a higher interest rate and $0-ending loans have
a lower interest rate than loans ended at other digits. I develop and estimate a Nash bargaining
model that allows for digit bias from both consumers and finance managers of auto dealers.
Results suggest that both parties perceive a steeper slope for larger ending digits and an extra
gap between payments ending at $99 and $00 in their payoff functions. This model can explain
the phenomena of payments bunching and differential interest rates for loans with different end-
ing digits. I use counterfactual to show that, counter-intuitively, digit bias is beneficial for the
party with the bias in bargaining. Consumers’ payments are reduced by $203 million in total
and the aggregate payments of finance managers increased by $102 million because of own digit
bias. I also quantify the economic impact of imposing non-discretionary markup compensation
policies in indirect auto lending. I find that the payments of African American consumers will
be lowered by $452 million and that of Hispanic consumers by $275 million.

Keywords: Bargaining, Digit Bias, Auto Finance, Minority Consumers, Dealer Compensation.
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1 Introduction

Bargaining is a commonly used price-setting mechanism in many markets such as automobiles and

B-to-B transactions. In bargaining, final prices vary across transactions instead of set by one side as

fixed posted prices. The two parties in negotiations evaluate the key variable of interest (e.g., price)

and reach a bargaining outcome depending on their relative bargaining power. Most of the empirical

bargaining literature characterizes the perceived value of the bargaining outcome with a fully rational

model and focuses on evaluating the key determinants of bargaining power that lead to the observed

bargaining outcomes (e.g. Draganska et al. 2010). However, people often use simple cognitive

shortcuts when processing information, which makes accounting for bounded rationality important

in describing economic behaviors (see Conlisk 1996 for a review). In a bargaining setting, decision-

makers on both sides are human beings. Behavioral decision researchers have long recognized

psychological influence in negotiation, such as status quo bias and reciprocity heuristic (Malhotra

and Bazerman 2008). Decision-makers may also be subject to perception bias when evaluating

numbers. For example, people have the tendency to focus on the leftmost digit of a number while

partially ignoring other digits (Poltrock and Schwartz 1984; Lacetera et al. 2012). With such a bias,

a number with 99-ending (e.g., $299) may be perceived to be significantly lower than the next round

number (e.g., $300). One consequence of such bias in the marketplace is the ubiquitous 99-cents

pricing (Thomas et al. 2010; Basu 2006).

In this paper, I empirically study a bargaining setting where the bargaining outcomes are affected

by digit bias in addition to bargaining power. When both parties are influenced by digit bias, they

will try to push the price toward their favorite side. For example, while buyers prefer a price with

99-ending digit, sellers perceive a price a bit higher with 00-ending digit to be a better deal. This

makes the bargaining outcome different from when prices are only set by one party. In this study, I

use a large data set with 35 million auto loans in the U.S. over a period of four years, and discover

several intriguing data patterns. First, the scheduled monthly payments of auto loans bunch at both

$9- and $0-endings. This bunching pattern is stronger over $100 marks, with more than twice as

many loans with $99-ending and 1.5 times as many loans with $00-ending, as loans with $01-ending.

Furthermore, the number of loans is systematically higher for larger ending digits (from $1 to $8).

Second, while the interest rate for $9-ending loans is 0.6% higher than the average, the rate for

$0-ending loans is 0.5% lower, after controlling for all consumer characteristics such as credit scores.

Finally, I find that consumers with a minority origin (African American or Hispanic) and low income

are more likely to have $9-ending loans, and pay a higher interest rate, than other consumers with a

similar credit profile and loan attributes. These data patterns are difficult to explain by a standard

economic model. I therefore develop a bargaining model that allows for digit bias from both parties

in the bargaining, which can explain the phenomena of payments bunching and differential interest

rates across consumer loan payments in the data.

The auto finance market provides a perfect setting for studying price bargaining. The dealer
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markup compensation policy in the indirect auto lending market leads to negotiations that cause

loan payments to vary across transactions. In a standard loan arrangement, banks quote a risk-

adjusted interest rate, called bank buy rate, based on the consumers’ risk profile (e.g., credit score).

On top of the bank buy rate, auto dealers charge consumers a markup, which represents their

compensation for arranging the loan. Unlike the bank buy rate, the markup reflects the relative

bargaining power between consumers and finance managers of auto dealers. Thus, loan payments

are the outcome of price negotiations instead of fixed prices. Studying how consumer loan payments

are determined has important policy implications. The markup compensation policy has attracted

much debate and legal actions. Opponents to this policy alleged that minority consumers end up

paying interest rates higher than similarly situated Caucasian borrowers (e.g., Munro et al. 2004).

Auto loans represent an expensive purchase for consumers with large impact on their financial

situations. With 107 million Americans carrying an auto loan,1 the size of the auto finance market

makes this study economically important.

I seek to address two main research questions in this study. The first question is to understand

how individual digit bias affects bargaining outcomes. I show that, counter-intuitively, having digit

bias is beneficial for the party with the bias in bargaining. This is achieved by building a bargain-

ing model that incorporates digit bias from both sides, estimating the model with auto loan data,

and exploring the effect of bias on bargaining outcomes through a counterfactual analysis. The

second question is to quantify the change in loan payments for minority consumers if the discre-

tionary markup compensation is banned through regulatory policy. This is obtained by evaluating

the change in payment outcomes among different consumer groups through another counterfactual

analysis, in which banks offer dealers two alternative non-discretionary compensation policies.

1.1 Research Strategy and Main Findings

Given the nature of the dealer compensation policy, I propose a bargaining model involving indi-

vidual consumers and finance managers with loan payments as the equilibrium outcome of a Nash

bargaining game. The model allows both parties to have potential perception bias toward numbers

in their payoff functions. Guided by reduced-form data patterns, I assume the payoff functions can

have two types of bias. First, payoff functions can have a discontinuity between payments ending

at $99 and $00. Moreover, the perceived difference from a $1 change in payment can depend on

its ending digit, i.e., the perceived change from $8 to $9 can be different from that from $7 to $8.

Note that neither of the biases is imposed in payoff functions. Depending on the model parameters

estimated from data, the payoff functions of both parties can reflect the bias or reduce to a standard

bargaining model without bias.

I estimate the model on the data that consist of realized loan outcomes and consumer charac-

1Federal Reserve Bank of New York, Quarterly Report on Household Debt and Credit, May 2017 Q1.
https://www.newyorkfed.org/medialibrary/interactives/householdcredit/data/pdf/HHDC_2017Q1.pdf
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teristics. I use the simulated method of moments, with the first and second moment conditions,

in the estimation. To pin down the model parameters associated with the digit bias of consumers

and finance managers, I impose a set of linear equality constraints, under which the proportion of

simulated loan payments ending at each digit is the same as observed from data, in the criterion

function.

Estimation results suggest that digit bias exists not only for consumers but also for finance

managers. For consumers, the perceived difference between $99- and $00-ending payments is $2.05

instead of $1. Their sensitivity toward a $1 change is higher with larger ending digits (e.g., the

perceived gap between $9- and $0-ending is $1.27, which is higher than the gap between $0- and

$1-ending at $0.9). The estimated bias for finance managers is similar. Standard economic studies

usually assume that companies are fully rational entities in making business decisions. In this

setting, however, finance managers who represent auto dealers are also human beings. They can be

subject to the same human tendency with numbers when negotiating with consumers. This study

thus adds to the existing literature that documents psychological bias among professionals, such

as lawyers in legal disputes (Birke and Fox 1999), professional traders in trading activities (Coval

and Shumway 2005), and managers in a multinational corporation regarding strategic initiatives

(Workman 2012). I show that incorporating digit bias from both parties is important for two

reasons. First, it is essential to explain the observed data patterns. In particular, the bias drives

payments bunching at $0-ending digits with a lower interest rate and at $9-ending digits with

a higher interest rate. Second, failure to account for the bias can lead to biased estimates for

consumers’ bargaining power.

With the model estimates, I explore the welfare implication for digit bias in bargaining. Under a

counterfactual scenario where consumers and/or finance managers are not subject to the bias, their

payoff functions become linear and continuous. I compare the loan payments when consumers are

subject to digit bias to a benchmark case when they do not have such bias. Behavioral biases are

typically thought to make people worse off. Counter-intuitively, I find that digit bias actually ben-

efits the party with the bias in bargaining. Consumers end up with lower monthly payments ($203

million in total, or 0.025%) because of digit bias. This is because the bias acts as a psychological

hurdle to stop finance managers to push the payments higher than $9- or $99-ending digits. The

effect is more significant for low bargaining power consumers. Similarly, dealers will receive a higher

markup profit ($102 million in total, or 0.013%) when finance managers are subject to digit bias,

as it is more difficult for consumers to push payments below $0- or $00-ending payments. When

both parties have the bias, the total loan payments will be reduced by $33 million compared to a

benchmark scenario where neither party has the bias.

The estimated bargaining model allows me to quantify the economic impacts from alternative

dealer compensation policies. In 2013, the Consumer Financial Protection Bureau (CFPB) issued a
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bulletin announcing that it would hold indirect auto lenders accountable for discriminatory pricing.2

Since then, the CFPB has taken action against several large auto lenders with significant fines.

Despite this, the discretionary markup practice is still commonly used by most indirect auto lenders.

I use another counterfactual analysis to investigate the impacts from a non-discretionary markup

policy. Fixing the total profit for dealers at the same level, I measure the subsequent change in loan

payments for minority consumers. My calculation shows that consumers from predominantly African

American and Hispanic geographical locations will pay $374 and $373 less for a loan, respectively.

In total, the savings are $452 million for African American consumers, and $275 million for Hispanic

consumers.

1.2 Related Literature

This paper is related to the literature in bargaining, numerical cognition and 9-ending prices, as

well as studies of the bunching phenomenon. The prior bargaining literature has studied price

negotiation in the contexts of automotive sales (Chen et al. 2008; Morton et al. 2011; Larsen 2014),

B-to-B transactions (Draganska et al. 2010; Grennan 2014) and interactions between online sellers

and buyers (Backus et al. 2019; Zhang et al. 2018). Most of the empirical bargaining literature

assumes fully rational agents, and studies how bargaining power influences bargaining outcomes.

This paper contributes to the empirical bargaining literature by studying how digit bias from both

sides also influences the bargaining outcomes. I show that considering digit bias is essential in

explaining the puzzling reduced-form data patterns in bargaining outcomes. In addition, failure to

incorporate digit bias could lead to biased estimates in the model. The insights could generalize to

other settings where bargaining outcomes are numeric in nature.

This paper also draws on the literature on numerical cognition, and the marketing literature on

9-ending prices. The numerical cognition literature in psychology primarily focuses on the differences

in behavioral perception between round and precise numbers. Past research has shown that buyers

may underestimate the magnitude of precise prices (Thomas et al. 2010), and that precise numbers

signal sellers’ confidence (Jerez-Fernandez et al. 2014). Offers at round numbers, however, can

symbolize completion (Yan and Pena-Marin 2017) and willingness to cut prices (Backus et al. 2019).

This paper also draws from the marketing literature that studies the prevalence of 9-ending prices

in retail sales (e.g. Monroe 1973; Schindler and Kibarian 1996; Stiving and Winer 1997; Anderson

and Simester 2003; Thomas and Morwitz 2005). 9-ending prices are generally found to have positive

impact on sales, because consumers round down the prices or the prices signal a low-price image.

This phenomenon is not limited to prices only. Lacetera et al. (2012) find a discontinuous drop

in the price of used cars when the odometer crosses 10,000 miles, driven by the left-digit bias of

consumers when processing mileage. In this paper, I build on the numerical bias theory in several

2https://files.consumerfinance.gov/f/201303_cfpb_march_-Auto-Finance-Bulletin.pdf (Accessed on Jan 10,
2020)

5



ways. I study the impact of such bias in a bargaining setting with an economically significant

purchase. Bargaining involves two-sided interaction. I show that in a bargaining setting digit bias

exists not only among consumers but also among finance managers. Furthermore, beyond the effect

of $9- and $0-endings, I examine the different sensitivity of payment changes as the ending digit

increases from $1 to $9.

This paper is also related to the economic literature that studies of bunching phenomena. Bunch-

ing is commonly observed at the level where discontinuities in monetary incentives occur, such as

income bunching at the level where tax rate changes (Saez 2010), and drug demand bunching at

the level where insurance payment jumps (Einav et al. 2015). Bunching can also be driven by

psychological incentives. For example, the finishing times of marathon races bunch before hour

marks, because the hour marks serve as a reference point (Allen et al. 2016). In the above exam-

ples, bunching occurs because consumers make one-sided decisions that are driven by the incentive

discontinuity. This paper studies the bunching phenomenon with consumers and finance managers

bargaining on auto loan payments. It leads to payments bunching at both $9- and $0-ending digits

with systematically different interest rates in the opposite direction.

The rest of the paper is organized as follows. Section 2 introduces the auto finance industry

background and presents reduced-form data patterns. I describe the bargaining model incorporating

digit bias in Section 3 and discuss the model estimation and identification issue in Section 4. Section

5 presents the estimation results and findings from counterfactual analyses. Finally, Section 6

concludes.

2 Industry Background and Data

The auto finance market is of high economic significance. With a $1.2 trillion balance in 2017,3 auto

loans represent the third largest consumer credit market in the United States. The auto finance

market is crucial to the automotive industry as over 80% of new vehicles sold in the United States are

financed.4 In this market, consumers typically obtain financing through auto dealers (i.e., indirect

auto loans). Cohen (2012) shows that about 80% of auto loans are originated at a dealer location

following the purchase of a new or used vehicle. Indirect auto loans are a significant source of

profit for dealers. Keenan (2000) estimates that 12.9% of dealership profit come from financing and

insurance.

In this paper, I focus on cases where consumers get auto loans from a traditional bank through

an auto dealer.5 In a typical transaction at the auto dealer, the consumer first chooses a car and

3Federal Reserve Bank of New York, Quarterly Report on Household Debt and Credit, May 2017 Q1.
https://www.newyorkfed.org/medialibrary/interactives/householdcredit/data/pdf/HHDC_2017Q1.pdf

4Consumer Reports, Consumers Rely on Car Financing More than Ever.
http://www.consumerreports.org/cro/news/2013/09/car-financing-on-rise-loans-and-leases/index.htm

5I do not consider auto loans from manufacturing financing (e.g., Toyota Financial) because these loans are often
provided to promote the vehicle sales.
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negotiates on the car price itself. After that, she will be brought to the finance manager’s office

to arrange auto financing. The focus of this paper is to study how the monthly payment number

is determined after consumers have selected the loan amount, i.e., how much to borrow, and the

loan length, i.e., how long to borrow.6 Why is the monthly payment a bargained outcome? This

is because auto dealers get compensated by arranging auto financing for consumers from a bank.

Finance managers from auto dealers add a markup on top of the bank buy rate as part of the total

consumer cost. The extra markup serves as the dealer compensation for arranging the loan. Unlike

the bank buy rate, which is determined by the consumer’s credit risk, the markup is at the dealer’s

discretion and depends on with whom the dealer arranges the loan.

Because of the markup policy, the finance manager has incentive to increase the loan payment

so that the dealer will receive a higher markup. Yet the consumer can negotiate for a lower payment

if she finds the payment too high. A report by the Center for Responsible Lending estimates that

the average markup is $714 per transaction using 2009 auto industry data and the markup varies

across individual consumers. In my data, I find that the interest rate for auto loans varies a lot for

consumers with the same credit profile and loan characteristics. This suggests that there is room

for bargaining the loan payment in each transaction.

2.1 Data Description

The empirical analysis of this paper leverages anonymized data on individual credit profiles provided

by Equifax Inc., one of the three major credit bureaus in the United States. The data sample includes

all non-subprime7 auto loans originated from banks or credit unions in the United States during a

four-year period from 2011 to 2014. For each auto loan in the sample, I observe the origination date,

loan amount, loan length, and scheduled monthly payment. The annual percentage rate (APR)8

can be calculated from the loan amount, loan length, and the monthly payment (see Appendix A

for detail). To remove potential outliers, I select auto loans with loan lengths from 2 to 8 years,

loan amount between $10k and $60k, and APRs above 1.9%.9 The selected data sample includes 35

million auto loans. Panel A of Table 1 shows some descriptive statistics for the loan characteristics.

The average loan amount is about $23,000, with a $399 monthly payment for about five and half

years, and the average APR is 4.3%.

6After loan amount and length are determined, the monthly payment and interest rate are one-to-one, where a
higher interest rate will imply a higher monthly payment and vice versa.

7Non-subprime consumers refer to those with at least 620 credit score at the time of auto loan origination.
Subprime lending typically involves additional information required, such as verified employment and income through
providing pay stubs or tax return documents, beyond the standard credit profile. This information can lead to
additional variation in interest rates. As the required additional information is unobserved from my data, I exclude
subprime consumers in the analysis to avoid potential bias in the analysis (e.g. a high loan payment can be due to
the consumer being unemployed and not because of her low bargaining power).

8I use APR and interest rate interchangeably in the paper.
9Loans with lower interest rates are very likely to be special promotional rates. They are commonly seen in

manufacturer financing (e.g., Toyota Financial Service), with the goal of promoting vehicle sales.
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Table 1: Summary Statistics

Mean 25th Percentile Median 75th Percentile
Panel A: Loan Characteristics

Loan Amount ($) 22,965 15,821 21,161 28,115
Loan Length (years) 5.4 5 5.8 6
Monthly Payment ($) 399 294 370 475
APR 4.8% 3.0% 4.0% 5.5%
Panel B: Consumer Characteristics

Credit Score (620-850) 726 674 725 778
Age 46 33 45 56
Income ($) 83,749 56,578 74,659 101,062
House Value ($) 207,185 121,200 168,300 248,100
Caucasian (%) 0.733 0.603 0.787 0.904
Hispanic (%) 0.097 0.025 0.056 0.131
African American (%) 0.089 0.014 0.040 0.104
Asian (%) 0.040 0.009 0.020 0.045
Other (%) 0.041 0.009 0.022 0.054

For consumer characteristics, I observe the credit score and age of each consumer as well as the 5-

digit zip code of her living place. The credit score is measured at the month of auto loan origination.

I further obtain the average household income, house value and racial composition at the zip code.

The average house value comes from the American Community Survey. Household income and

racial composition data comes from the Census. It measures the percentage of population that is

Caucasian, African American, Hispanic, Asian, or others. I use these data to proxy for the household

characteristics of individual consumers. Panel B of Table 1 shows some descriptive statistics for

these variables. An average consumer in the data sample is 46 years old, has 726 credit score, lives

in an area with an average $83.7k household income, $207k house value, 73.3% Caucasians, 9.7%

Hispanics, and 8.9% African Americans.

2.2 Reduced Form Data Analysis

The Bunching Phenomenon

I illustrate the bunching patterns in monthly loan payments. Scheduled monthly payments bunch at

both $9- and $0-endings. Such bunching pattern is more significant at $100 marks. Beyond $9- and

$0-endings, the number of loans also increases with larger ending digits from $1 to $8. Moreover,

the level of $9-ending bunching varies systematically across different groups of consumers.

Figure 1 plots the frequency of the monthly payment ending digit when payments cross $100.

Each bar represents the percentage of loans with ending digit from $0 to $9. Instead of a uniform

distribution of 10% probability for each number, there are more loans with $9-ending payments as
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Figure 1: Frequency of Monthly Payment Ending Digit
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well as $0-ending payments.10 When payments cross $100 marks, $9-ending payments are more than

twice as many, and $0-ending payments are 1.5 times as many, as payments ending at $01. Bunching

pattern is similar, although less pronounced, at other $10 marks, where $9-ending payments are 30%

more, and $0-ending payments are 12% more, than $1-ending payments. Beyond $9- and $0-endings,

another interesting pattern is that the percentage of loans is higher for payments with a larger ending

digit.11 For example, payments ending at $8 are 17% more than payments ending at $1.

Consumers who pay monthly payments with $9-ending digits and those who pay with $0-ending

digits are different across multiple consumer characteristics. Panel A in Table 2 shows on the

ratio of the number of $99-ending over the next $01-ending loans (e.g., $399/$401). The $9-ending

bunching is higher among consumers with lower credit scores, older ages, and living in areas with

lower incomes and larger minority populations. Panel B in Table 2 shows the ratio of the number

of $00-ending loans over the next $01-ending loans (e.g., $400/$401). Opposite to $9-ending, the

$0-ending bunching is higher among consumers with higher credit scores.

Interest Rates

This sub-section illustrates two points regarding loan interest rates. First, $9-ending loans have

a higher average interest rate, while $0-ending loans have a lower interest rate, than loans with

payments ending at other digits. Second, minority consumers pay a higher interest rate on average

than Caucasian consumers.

Loans with $9- and $0-ending payments are systematically different. Table 3 compares the

10The data sample includes all auto loans from banks and credit unions. Some loans may be originated directly
from banks or credit unions and are not subject to the typical markup process in indirect auto lending. I expect the
bunching pattern to be more significant for loans originated at the dealer location.

11$5-ending is an exception. The number of loans is especially high for payments ending at $25 or $75. This is
likely driven by consumers and finance managers perceiving these payments as round numbers.

9



Table 2: Heterogeneous Levels of Payment Bunching at $99- and $00-endings

Panel A: The Ratio of $99-ending Loans to $01-ending Loans (Overall ratio: 2.08)
Credit Score 620-660 661-700 701-740 741-780 781-850

2.27 2.21 2.10 2.02 1.90
Age <30 31-40 41-50 51-60 >60

2.03 2.08 2.10 2.09 2.13
Income (zip-level) < $50k $50-70k $70-90k $90-120k > $120k

2.23 2.07 2.08 2.07 1.97
Caucasian Proportion (zip-level) <50% 50-70% 70-80% 80-90% >90%

2.31 2.14 2.08 2.00 1.98
Hispanic Proportion <2% 2-5% 5-10% 10-20% >20%

2.04 2.04 2.05 2.12 2.24
African American Proportion <2% 2-5% 5-10% 10-20% >20%

1.93 2.05 2.16 2.17 2.36
Panel B: The Ratio of $00-ending Loans to $01-ending Loans (Overall ratio: 1.55)
Credit Score 620-660 661-700 701-740 741-780 781-850

1.50 1.50 1.54 1.57 1.61
Age <30 31-40 41-50 51-60 >60

1.48 1.55 1.56 1.56 1.59
Income (zip-level) < $50k $50-70k $70-90k $90-120k > $120k

1.57 1.56 1.54 1.54 1.52
Caucasian Proportion (zip-level) <50% 50-70% 70-80% 80-90% >90%

1.58 1.54 1.52 1.55 1.55
Hispanic Proportion <2% 2-5% 5-10% 10-20% >20%

1.56 1.54 1.53 1.54 1.59
African American Proportion <2% 2-5% 5-10% 10-20% >20%

1.56 1.55 1.55 1.52 1.53

Table 3: Characteristics for Loans with Different Ending Digits

Ending Digits Credit Score Loan Amount ($1000) Loan Length (Years) APR (%)
$5 725.52 22.97 5.45 4.785
$6 725.90 22.90 5.44 4.778
$7 725.66 22.96 5.45 4.791
$8 725.46 23.04 5.46 4.804
$9 724.20 23.34 5.54 4.847
$0 726.23 22.82 5.42 4.754
$1 726.29 22.84 5.41 4.761
$2 726.18 22.84 5.41 4.770
$3 726.10 22.88 5.42 4.776
$4 725.86 22.93 5.44 4.787

characteristics for loans with different ending digits. On average, $9-ending loans have lower credit

scores, larger loan amounts, longer loan lengths, and higher APRs compared with $0-ending loans.
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To further investigate the difference in interest rates for loans with different ending digits, I use

regression analysis to control for other factors that can affect the interest rate as follows:

inti =
9
∑

j=1

γj · I (d(paymenti) = j) + Xiβ + ǫi

where inti is the interest rate of loan i, and I (d(paymenti) = j) an indicator variable that equals 1

if the ending digit of the monthly payment is j (j is from 1 to 9, with 0 as the normalized factor).

Xi includes credit score, loan amount, and loan length. I also include date and state fixed effects for

each loan. Results are reported in Table 4. To capture the potential non-linearity of the relationship

between interest rates and covariates Xi, Column (1) and (3) use third order polynomial functions

of these variables, while Column (2) and (4) categorize them into bins and use bin fixed effects.

Column (3) and (4) also include consumer characteristics, including age, ethnicity, income, and

average house value.

Across different specifications, $9-ending loans consistently carry the highest interest rate, about

0.053% higher than $0-ending loans.12 To put the numbers in perspective, for a 5 year, $25000 loan

with 6% APR, this difference would result in a $36 higher cost for consumers. As the coefficients

for $1-ending to $9-ending are all significant positive, it implies that $0-ending payments have the

lowest interest rate. Figure 2 visually presents the regression results from Column (1). Beyond $9-

and $0-ending, loans with large ending digits generally have a higher interest rate than loans with

small ending digits.13

Table 4 also shows that minority consumers, as well as consumers with older age, lower in-

come, and lower house value are more likely to have higher interest rates. Furthermore, consumers

from geographical regions with high African American and Hispanic population are charged higher

interest rates. Since banks do not use these characteristics when deciding the bank buy rate, the in-

terest rate difference reflects the dealer markup. Put in the context of bargaining, the reduced-form

analysis provides an evidence that these consumers have a lower bargaining power.

To summarize, there are more loans with $9-ending payments, which carry a higher interest

rate on average, and there are more loans with $0-ending payments with a lower interest rate. In

addition, the tendency to have $9-ending loans is higher among consumers with a lower bargaining

power, who receive a higher interest rate. I discuss how digit bias from both consumers and finance

managers in a bargaining setting can explain these data patterns after introducing the model.

12For robustness, I have also implemented a machine learning method, using boosted trees, to predict APR for
loans with different ending digits, and the results are very similar (see Appendix B for details).

13The slightly higher interest rate of $4-ending loans than that of $5-ending loans is an exception. This is likely
due to $5-ending payments being perceived as round numbers, similar to $0-ending payments.
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Table 4: Interest Rate Regression Results

Dependent variable:
APR

$1-ending 0.00012*** 0.00013*** 0.00014*** 0.00014***

(0.00002) (0.00002) (0.00002) (0.00002)
$2-ending 0.00018*** 0.00019*** 0.00019*** 0.00020***

(0.00002) (0.00002) (0.00002) (0.00002)
$3-ending 0.00022*** 0.00024*** 0.00023*** 0.00025***

(0.00002) (0.00002) (0.00002) (0.00002)
$4-ending 0.00029*** 0.00031*** 0.00028*** 0.00031***

(0.00002) (0.00002) (0.00002) (0.00002)
$5-ending 0.00017*** 0.00021*** 0.00016*** 0.00020***

(0.00002) (0.00002) (0.00002) (0.00002)
$6-ending 0.00019*** 0.00022*** 0.00019*** 0.00022***

(0.00002) (0.00002) (0.00002) (0.00002)
$7-ending 0.00028*** 0.00031*** 0.00027*** 0.00030***

(0.00002) (0.00002) (0.00002) (0.00002)
$8-ending 0.00037*** 0.00040*** 0.00036*** 0.00039***

(0.00002) (0.00002) (0.00002) (0.00002)
$9-ending 0.00053*** 0.00061*** 0.00049*** 0.00057***

(0.00002) (0.00002) (0.00002) (0.00002)
Age 0.00004*** 0.00003***

(0.0000003) (0.0000003)
Income (in $1 million) -0.03293*** -0.03260***

(0.00015) (0.00015)
African American percentage 0.01045*** 0.00985***

(0.00003) (0.00003)
Hispanic percentage 0.01463*** 0.01388***

(0.00006) (0.00005)
Average house value (in $1 million) -0.00071*** -0.00039***

(0.00005) (0.00005)
Covariates X Polynomial Categorical Polynomial Categorical
Date Opened Fixed Effects Yes Yes Yes Yes
State Fixed Effects Yes Yes Yes Yes
Observations 34,760,946 34,760,946 34,760,577 34,760,577
R2 0.30016 0.31733 0.30829 0.32458
Note: *p<0.1; **p<0.05; ***p<0.01

Notes: Covariates X include credit score, loan length and loan amount. Results from two specifications are shown:
Column (1) and (3) use third order polynomials, and Column (2) and (4) categorize each covariate into bins and use
bin fixed effects.
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Figure 2: Interest Rate for Loans with Different Ending Digits
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3 The Bargaining Model Incorporating Digit Bias

In this section, I propose a bargaining model that involves consumers and finance managers of auto

dealers. Importantly, it allows for digit bias from both parties. The proposed model can explain

the bunching phenomenon and the differential interest rates shown in data.

3.1 Nash Bargaining

Because of the discretionary markup policy in indirect auto financing, I characterize the realized

monthly payments as the bargaining outcome between consumers and finance managers. I assume

that, by the time of discussing the loan arrangement, consumers have already chosen the car they

want to buy and have agreed on the car price with the dealer. In addition, consumers have decided

the loan amount and loan length. What is left for bargaining is the monthly payment, which will

determine the loan interest rate.14

The bargaining outcome can be a result of back-and-forth counter-offers from both parties.

Not observing these from data, I cannot model the potentially complicated negotiation process.

Instead, I borrow the standard Nash solution concept and focus on the outcome of the bargaining

game. The advantage of this approach is that the model can allow for various bargaining processes,

which may involve lengthy negotiations or reach agreements right away. It has been shown that

14Consumers could instead face a menu of loan schedules, each with a unique combination of loan amount, loan
length and monthly payment. Even in this case, there can still be room for negotiation on the actual monthly
payments, after consumers have selected the loan amount and length. The identification issue will be further discussed
in section 4 in the paper.
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the Nash solution is a good approximation to the equilibrium outcome in non-cooperative strategic

alternating bargaining games with either time-preference or uncertain termination of the bargaining

(e.g. Binmore et al. 1986).

The key assumption behind the Nash solution concept is that, for auto loan i, the monthly

payment pi observed from the data will maximize a joint-value function as follows:

v(pi) = (uc(pi)− uc(rci ))
αi ·
(

uf (pi)− uf (rfi )
)1−αi

(1)

In this value function, uc(pi) represents the payoff function for the consumer, and uf (pi) the payoff

function for the finance manager. The reservation price for the consumer is rci , and for the finance

manager is rfi . Thus, uc(pi) − uc(rci ) represents the surplus for the consumer and uf (pi) − uf (rfi )
the surplus for the finance manager. Finally, αi is the consumer’s relative bargaining power, which

ranges from 0 to 1, and the finance manager’s bargaining power is 1 − αi. To maximize the joint-

value function, pi has to be within the range where both the consumer and the finance manager

enjoy positive surpluses; otherwise, the negotiation will break down. The larger the bargaining

power of one party, the larger the surplus it will gain from the bargaining.

To model the reservation prices, I use the institutional details that a bank or a credit union will

offer the finance manager a bank buy rate which is based on some loan and consumer characteristics

(e.g., credit score) Xi. This buy rate determines a monthly payment p(Xi). I assume that the finance

manager will not accept a monthly payment lower than p(Xi),
15 and therefore

rfi = p(Xi) (2)

Next, I assume there is a maximum interest rate, which uniquely determines a monthly payment

p̄(Xi), which the consumer can obtain from outside sources (e.g., from her own bank). The consumer

will not accept a monthly payment higher than p̄(Xi). Therefore, the reservation for consumers is

to pay p̄(Xi),

rci = p̄(Xi) (3)

3.2 Payoff Functions

The consumer’s payoff decreases with the monthly payment. Suppose she evaluates the cost of

the payment without bias, her payoff function would be uc(pi) = −pi, and her surplus from the

negotiation is p̄(Xi)− pi. Likewise, if the finance manager can evaluate the monetary return of the

payment without bias, his payoff function would be uf (pi) = pi, and his surplus is pi − p(Xi).

The model allows for two types of digit bias, the extent of which will be estimated from the

15This assumption can be violated if the auto dealer is willing to take a loss from financing so that it can gain
from selling the car and add-on services. In the data sample, I exclude loans with APRs lower than 1.9% (see the
discussion in the data section) to avoid mis-specifying the reservation prices for those loans.
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data. The first type captures the discontinuity in the perceived value when payments cross $100

marks. This helps explain the high level of bunching at $99- and $00-ending loans. Let h(pi)
be the digit in the hundredth place for payment pi, e.g., h($400) = 4 and h($399) = 3. I use a

specification δc � [h(p̄(Xi)) − h(pi)] to model the discontinuity in the consumer’s perceived value.

Model parameter δc captures the discontinuous change in consumer’s payoff every time payment

pi crosses $100 marks. This bias captures the effect that $399 may be perceived to be much lower

than $400. Similarly, the discontinuity for the finance manager is specified as δf · [h(pi)−h(p(Xi))].

Model parameter δf captures the discontinuous change in finance manager’s payoff when payment

pi crosses $100 marks.16

The second type of bias is that the sensitivity to $1 change in payment may differ as the payment

increases to the next $10 level. This bias helps explain the observed payments bunching at $9- and

$0-endings, as well as the increasing number of loans from $1- to $8-ending. Let⌈pi⌉10 be the number

that rounds up payment pi to the next $10 level. For example, ⌈$389⌉10 = ⌈$390⌉10 = $390. I use a

specification, 101−ρc · (⌈pi⌉10 − pi)ρ
c

− (⌈pi⌉10 − pi), to allow for curvature in the consumer’s payoff

function. The functional form ensures that this bias goes away when pi ends in $0, and that the

payoff is monotonic in p.17 Depending on the parameter ρc, the consumer’s payoff function can

be concave (0 < ρc < 1), convex (ρc > 1) or linear (ρc = 1) within the $10 range.18 The payoff

curvature captures the effect that the perceived difference between payments with $6- and $7-endings

can be different from that between $5- and $6-endings. Likewise, the effect on the finance manager

is represented by (⌈pi⌉10 − pi)− 101−ρf · (⌈pi⌉10 − pi)ρ
f

, where model parameter ρf determines the

curvature of the finance manager’s payoff function.

Combining the two types of bias, the consumer’s payoff function is

uc(pi) = −pi + δc · [h(p̄(Xi))− h(pi)] +
(

101−ρc · (⌈pi⌉10 − pi)ρ
c

− (⌈pi⌉10 − pi)
)

(4)

and the finance manager’s payoff function is

uf (pi) = pi + δf ·
[

h(pi)− h(p(Xi))
]

+
(

(⌈pi⌉10 − pi)− 101−ρf · (⌈pi⌉10 − pi)ρ
f
)

(5)

To better illustrate the effect of the bias on the payoff functions, I plot several examples under

16For the consumer, h (p̄(Xi)) is included as a scaling constant, so that when pi = p̄(Xi), the consumer payoff
discontinuity will become zero. Similarly, for the finance manager, h

(
p(Xi)

)
is also a scaling constant to restrict the

manager’s payoff discontinuity to zero when pi = p(Xi).
17A more general specification is −

(
⌈pi⌉10 − λ · (⌈pi⌉10 − pi)

ρc )
. I choose λ = 101−ρc

to satisfy the following

conditions: 1) When ρc = 1, λ = 1 as such the payoff function is linear. 2) To ensure payoff monotonicity, λ needs
to satisfy 0 < λ < 10 · 9−ρc

.
18This can be seen by examining the first and second order derivative of the consumer’s payoff function within

the $10 range. The first order derivative is ∂uc(pi)
∂pi

= −101−ρc
· ρc · (⌈pi⌉10 − pi)

ρc
) < 0. The sign of the second

order derivative depends on ρc, ∂2uc(pi)
∂p2i

= 101−ρc
· ρc · (ρc − 1) · (⌈pi⌉10 − pi)

ρc
−2. It is negative when 0 < ρc < 1,

which corresponds to a concave consumer’s payoff function within the $10 range, and positive when ρc > 1, which
corresponds to a convex consumer’s payoff function.
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different parameter values in Figure 3. The length of arrows represents the payoff difference for

$1 change in payment. I assume that the payoff discontinuities over $100 marks are δc = 1.5
and δf = 1. The curvature of the payoff function is determined by ρc and ρf . When ρc = 0.7,
consumers are more sensitive to the change in payment as it increases to the next $10 level (Figure

3, top left), with the largest perceived difference between $9- and $0-ending payments. When the

payment crosses $400, there is an additional drop of δc. When ρc > 1, consumers are less sensitive to

payment changes with larger ending digits (Figure 3, bottom left). Similarly, the top right diagram

of Figure 3 shows that with ρf = 0.8, the finance manager is more sensitive to payment changes

with larger ending digits but the curvature is less than that of the consumer’s payoff as ρf > ρc.
The bottom right diagram of Figure 3 shows that when ρf = 1.2, finance managers are less sensitive

to payment changes with larger ending digits.

3.3 Bargaining Power

The relative bargaining power αi in equation (1) can be heterogeneous among consumers. For

example, minority or lower income consumers may be more likely to have a lower bargaining power.

The consumer bargaining power is specified as follows

αi =
1

1 + exp(µα + Xiβ + ǫi)
(6)

where Xi includes a vector of loan characteristics including the loan amount and loan length,

and consumer characteristics including credit score, age, zip-code level household income, house

value, and the proportion of African Americans and Hispanics in the population. The stochastic

component ǫi captures the heterogeneity in bargaining power beyond what is explained by Xi. I

assume that it follows a normal distribution, i.e., ǫi ∼ N(0, σ2
ǫ ). The parameters µα, β and σǫ govern

the distribution of bargaining power in the consumer population.19

Note that the Nash solution concept predicts that the final monthly payment depends on the

bargaining power of the consumer relative to the finance manager, without the need for details

about how the two parties bargain back-and-forth. The model does not require multiple rounds of

negotiations. If the finance manager has full information on the joint value function, he could offer

the payment predicted by the model at the beginning and, if the consumer also has full information,

she would immediately accept. In this sense, the proposed bargaining model can generalize to

environments where back-and-forth price negotiations are not frequently observed.

19Dealer attributes, such as the dealership for different car manufacturers or the size of the dealer, could also affect
the relative bargaining power. These attributes are not observed from the data.
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Figure 3: Examples of Consumer’s and Finance Manager’s Payoff Functions
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3.4 Payments Bunching and Differential Interest Rates

In this section, I discuss how the bargaining model with digit bias can rationalize the data patterns

of bunching payments and differential interest rates using a simple stylized model. Note that in

the model a consumer with a large bargaining power α_i can push the monthly payment closer to

the lower bound p(Xi) and away from the upper bound p̄(Xi). This is the case even though the

consumer and the finance manager have digit bias. The digit bias, however, creates discontinuities

in the payoff functions and make the final monthly payment different from that when the bias does

not exist.
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Bunching Payments

To illustrate how bunching payments come from the model, I will use a simplified version of payoff

functions, where there are only discontinuities in the payoff function between $9- and $0-ending

payments. With only consumer bias, payments bunch at $9-ending and few payments end at $0.

Let z represent a $9-ending payment, and z + 1 is $0-ending with $1 more each month. Suppose

the consumer’s payoff function has a discontinuity of δc at z, that is, uc(p) = −p if p = z and

−p − δc if p = z + 1. Assume that the finance manager’s payoff is linear with no bias, that is,

uf (p) = p. Nash bargaining solution concept predicts that the payment p maximizes the joint value

function. I focus on comparing the likelihood of the payment to be at z or z + 1 by evaluating

log
(

v(z+1)
v(z)

)

= α · log
(

1− 1+δc

p̄−z

)

+ (1−α) · log
(

1 + 1
z−p

)

. Since log
(

1− 1+δc

p̄−z

)

decreases with the

bias δc > 0, log
(

v(z+1)
v(z)

)

is more likely to be negative, compared with the case when δc = 0. This

implies that loan payments are more likely to bunch at z ($9-ending). In contrast, there will be few

payments at z + 1 ($0-ending).

With the same logic, the bias of the finance manager will lead to bunching at $0-ending loans,

represented by z + 1. Only when both consumers and finance managers are subject to digit bias

(i.e. δc > 0 and δf > 0), can payments bunch at $9 and $0. Furthermore, the number of loans with

payments ended at $9 will increase as the consumer’s digit bias δc becomes larger. The increase

is drawn from loans with payments ending at $0, $1, and so on, when the bias does not exist.

Similarly, the number of loans with payments ending at $0 is higher with larger bias δf from the

finance manager, and the increase is drawn from loans with payments ending at $9, $8, and so on.

The intuition of the bunching pattern is that, with a large drop in the payoff function for

consumers from $9- to $0-ending payments, it is hard for the finance manager to increase payments

from $9- to $0-ending or beyond. Therefore, there are more loans with payments bunched at $9-

ending digits. Likewise, a large drop in the payoff function for the finance manager from $0 to $9

makes it hard for consumers to bargain down from $0-ending payments, leading more payments to

bunch at $0-ending digits.

Difference in Interest Rates

The systematic interest rate difference between $9- and $0-ending loans reflects the bargaining power

difference for consumers with these loans. Using the same simplified example above, I explore how

the bargaining power α influences the likelihood of a loan payment to settle at z or z+1. This is

done through examining how log
(

v(z+1)
v(z)

)

= α · log
(

1− 1+δc

p̄−z

)

+(1−α) · log
(

1 + 1+δf

z−p−δf

)

changes

with the bargaining power. As the bargaining power varies, the implied interest rates will also be

different for loans with z and z+1 payments.

Bargaining power has two opposite effects on log
(

v(z+1)
v(z)

)

. The first effect is that, when α is low,

the payment level is closer to the consumer’s reservation price p̄ and farther away from the finance
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manager’s reservation price p. Therefore, log
(

1− 1+δc

p̄−z

)

and log
(

1 + 1+δf

z−p−δf

)

are both smaller,

and thus log
(

v(z+1)
v(z)

)

is more likely to be negative. As such the payment is more likely to be set at

z. The second effect is that, when α is low, the relative weight of log
(

1− 1+δc

p̄−z

)

(which is negative)

is smaller and the weight of log
(

1 + 1+δf

z−p−δf

)

(which is positive) becomes larger. Thus, log
(

v(z+1)
v(z)

)

is more likely to be positive, and there will be more loan payments bunching at z + 1.

Which effect dominates depends on the bargaining power and the extent of the discontinuities in

the consumer’s and the finance manager’s payoff functions. I use a simulation exercise to illustrate

the relationship. First, I assume the payoff discontinuities are δc = 0.5 and δf = 0.4 (i.e. the

consumer’s bias is larger). The finance manager’s reservation price p is drawn uniformly from

400 to 500, and the consumer’s reservation price is p̄ = p + 50. Panel (A) of Figure 4 plots the

proportions of simulated payments ended at $9- and $0-ending digits at different levels of α. When

the overall bargaining power is high among consumers (i.e., their α′s are in the region of 0.5-1),

the first effect prevails. That is, the proportion of $9-ending payments decreases among consumers

with higher α within the range (see the left diagram). In contrast, the proportion of $0-ending

loans increases among consumers with higher α (see the right diagram). Given that the interest

rates are negatively related to the bargaining power, these results suggest that, when consumers’

bargaining power is high in general, those who pay $9-ending loans are more likely to pay a higher

interest rate, and those who pay $0-ending loans are more likely to pay a lower interest rate, when

compared with the others.

In the region where consumers’ bargaining power is low overall (i.e., their α′s are in the region

of 0-0.5), the second effect prevails, and therefore the proportion of $9-ending loans increases and

the proportion of $0-ending loans decreases, among consumers with higher α. Consequently, we

should observe those who pay $9-ending loans are more likely to pay a lower interest rate, and those

who pay $0-ending loans are more likely to pay a higher interest rate, when consumers’ bargaining

power is low in general.

Next, I assume the payoff discontinuities are δc = 0.4 and δf = 0.5 (i.e. the finance manager’s

bias is larger), and repeat the simulation. Panel (B) of Figure 4 graphically illustrates the results.

The data pattern is opposite to that in Panel (A). That is, when consumers’ bargaining power is

high in general (i.e., their α′s are in the region of 0.5-1), the model predicts those who pay $9-

ending loans are more likely to pay a lower interest rate, and those who pay $0-ending loans are

more likely to pay a higher interest rate. In contrast, when the overall bargaining power is high

among consumers (i.e., their α′s are in the region of 0-0.5), $9-ending loans are more likely to pay

a high interest rate and $0-ending loans are more likely to pay a low interest rate.

To conclude, the relationship between the $9- and $0-ending loans and their interest rates

depends on the consumer bargaining power and the extent of the digit bias from both sides in my

model. Note that the model is flexible enough to predict not only the relationship I observe in the

data, but also when the relationship is the opposite. Consequently, it can be applied to different
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Figure 4: Bunching at $9- and $0-ending Payments and Bargaining Power

Panel (A). Bunching patterns when the consumer’s bias is larger (δc = 0.5,δf = 0.4).

Panel (B). Bunching patterns when the finance manager’s bias is larger (δc = 0.4,δf = 0.5).

general contexts when prices are determined by the two-sided bargaining.

4 Model Estimation

The data that I use for estimating the proposed model includes the monthly payment pi, and the

loan and consumer characteristics Xi. The set of model parameters is Θ = δc, δf , ρc, ρf ;µa, β, σǫ.

The first four parameters govern the digit bias in the payoff function, and the latter three determine

the bargaining power distribution. In this section, I discuss the estimation strategy, the details of

the estimation procedure, and the model identification.

4.1 Moment Conditions with Equality Constraints

I use the simulated method of moments (SMM) for model estimation because deriving a likelihood

function is challenging with the stochastic term ǫi entering the joint value function non-linearly

(equation 6). Another advantage of using the SMM is that consistent estimates can be obtained
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with a finite number of simulations to construct the moment conditions. I utilize the first and second

moment conditions to identify the mean and dispersion of bargaining power. In the estimation, I

draw ǫsimi for every loan from the distribution ǫi ∼ N(0, σ2
ǫ ), where sim = 1, . . . , NS. Given ǫsimi ,

I simulate the monthly payment, psimi (Xi,Θ) based on observed covariates Xi and assumed model

parameters Θ. Let psi (Xi,Θ) = 1
NS

∑NS
sim=1 psimi (Xi,Θ), and let Θ^0 be the true parameters. The

first and second moment conditions are as follows:

E
[

pi − psi
(

Xi,Θ0) Xi

]

= 0

E
[

(pi − E(pi|Xi))
2 −

(

psi
(

Xi,Θ0)− E
(

psi
(

Xi,Θ0)))2 Xi

]

= 0 (7)

where pi is the observed payment. E(pi|Xi) is the average observed monthly payments, and

E
(

psi
(

Xi,Θ0)) is the average simulated monthly payments. At true model parameters Θ0, the

differences between the true and the simulated payment as well as between the variance of true and

simulated payments, are uncorrelated with instruments Xi. The estimated Θ̂ set the sample analog

of moments as close as possible to zero.

With the moment conditions alone, however, it is still difficult to pin down the digit bias pa-

rameters. This is because these parameters are uniquely mapped to the distribution of loans with

different ending digits. To estimate the digit bias parameters, I impose a set of linear equality

constraints while minimizing the criterion function constructed from the moment conditions. Let

e(pi) be the ending digit of payment pi, i.e., e(pi) = pi − ⌊ pi
10⌋ · 10, where ⌊x⌋ is an operator that

removes decimal places from x (e.g. ⌊29.9⌋ = 29). Also, let

E[d] =
1

N

N
∑

i=1

I [e(pi) = d] ,

ˆE[d](Θ) =
1

N

N
∑

i=1

1

NS

NS
∑

sim=1

I
[

e
(

psimi (Xi,Θ)
)

= d
]

for all ending digits d = 0, 1, . . . 9, where I[·] is an indicator function that takes the value of 1 if the

logical expression inside the bracket is true, and 0 otherwise. The equality constraint I impose in

the estimation is

E[d] = ˆE[d](Θ) (8)

That is, the proportion of payments ending at each digit d is the same among observed and simulated

payments. These equality constraints help identify the digit bias parameters.

4.2 Details of the Estimation Procedure

Before estimating the model parameters, I estimate the consumer reservation price, −p̄(Xi), and

the finance manager reservation price, p(Xi), as the first step (see equations 2 and 3). I assume that
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the finance manager reservation price is determined by the bank buy rate, which is the cost of the

loan for the dealer. The bank buy rate is approximated by the lower bound of APRs for a given loan

type that has a similar loan amount, length, credit score, and time period, in the data.20 For loan

types with few observations in data, this method will give an imprecise approximation. To solve this

problem, I estimate the relationship of the bank buy rate and relevant covariates21 in a regression,

using data from loans types with at least 50 observations. The regression coefficients are then used

to predict the bank buy rate for all loan types, including ones with few observations in data. To

estimate the consumer reservation price, I assume that the interest rate gap between the consumer

and finance manager reservation varies only across time periods but not among consumers.22 I

estimate the gap in each period of the data.23 The consumer reservation interest rates are equal

to the estimated gap plus the bank buy rate. With the estimated bank buy rate and consumer

reservation interest rate, I calculate the consumer and finance manager reservation prices, which

are expressed as monthly payments, using the observed loan amount and loan length.

With p̄(Xi) and p(Xi), I can simulate monthly payment psimi (Xi,Θ) given simulated ǫsimi , which

maximizes the joint value function in equation (1). As there are discontinuities in the payoff func-

tions, psimi (Xi,Θ) cannot be solved analytically using the first-order condition. Since all the monthly

payments in the data are integers (e.g., $399), in the model estimation I calculate the joint value

for each integer value between p̄(Xi) and p(Xi), and choose the one with the highest value as the

simulated payment.

Finally, I use a two-step feasible GMM estimation method. In step 1, I set the weighting matrix

W to be the identity matrix and compute estimate Θ̂(1). In step 2, I calculate the optimal weighting

matrix

Σ̂ =

(

1

N

N
∑

i=1

g
(

pi, Xi, Θ̂(1)

)T

· g
(

pi, Xi, Θ̂(1)

)

)−1

where g
(

pi, Xi, Θ̂(1)

)

is an N ×K matrix that represents the sample moments (N is the number of

20Empirically, I only use loans above the 5th percentile of the APRs, among loans of the same type, to avoid outlier
issues. Loans are similar if borrowers have the same credit score, within a range of loan amount (within $5000) and
loan length (within 1 year) and originated in the same month.

21I use third-order polynomials of credit score, loan amount and loan length, plus year-month fixed effects, as
covariates.

22This assumption is reasonable if the interest rate from the outside source that a consumer can obtain the auto
loan also uses the same rule that determines p(Xi), plus a fixed markup. To the consumer, because she will have to
search for the outside source and apply separately, there is also an additional cost to seek a loan from this source. The
fixed markup plus the additional cost is represented by the difference between p̄(Xi) and p(Xi), which does not vary
by consumer types. If this assumption is violated, the error of measuring p̄(Xi) will attribute to the bargaining power
in the estimation. For example, consumers with a low reservation price, such as those who obtain a pre-approval loan
from their own bank, will be treated as those who have a high bargaining power in the model.

23Similar to using the 5th percentile as the lower bound, I only use loans below the 95th percentile of APRs to
avoid outlier issues. This way, the gap between lower and upper bounds covers 90% of all observed interest rates.
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loans and K = 1824 is the number of moments I use). This way it takes account of the variances and

covariance between the moment conditions. Model estimates Θ̂ are re-computed with the updated

weighting matrix.

4.3 Identification

4.3.1 Identification of Bargaining Power Parameters

With p̄(Xi) and p(Xi) that are computed in the first step, parameters associated with the relative

bargaining power, {µα, β}, are identified from how close the realized monthly payment pi is to

p̄(Xi) relative to p(Xi). If the average payment across all consumers is close to p(Xi), it implies

that the overall consumer bargaining power is large, which identifies µα. If the average payment of

consumers with specific Xi is closer to p(Xi) than other consumers to their lower bound payments,

this implies that the consumer bargaining power associated with Xi is larger, which identifies β.

Furthermore, the identification of the variance σv_ǫ comes from the variation of monthly payments

from consumers with the same Xi.

4.3.2 Identification of Digit Bias Parameters

The identification for the digit bias parameters {δc, δf , ρc, ρf} comes from the distribution of the

number of loans ending at different digits. The simplified example in Figure 4 is a good illustration.

Given that µα, β, and σǫ are identified, the distribution of α′s across consumers is identified. Suppose

α′s are populated in the low bargaining power region (i.e. between 0 and 0.5). If the loan payments

of the majority of consumers whose expected bargaining power, i.e., E(αi|Xi, µα, β, σǫ), is low end

at $9, while that of consumers whose expected bargaining power is high end at $0, this implies that

the extent of consumers’ bias is smaller than that of finance managers’ (i.e., Panel (B) of Figure

4). Suppose α′s are in the high bargaining power region (i.e. between 0.5 and 1). In this case the

above bunching pattern will imply the opposite for the digit bias.

To illustrate the identification argument beyond the simplified example which only focuses on

$9- and $0-ending loans, Figure 5 plots the distribution of the simulated monthly payments under

different sets of bias parameters, with bargaining power α drawn from a uniform distribution between

0 and 1. I start off with a benchmark case where there is no digit bias for consumers or finance

managers, i.e., δc = 0, δf = 0, ρc = 1, ρf = 1. As shown in the top left diagram, the distribution of

payments is smooth without loan payments bunching at any ending digits. When δc = 0, δf = 0,

ρc = 0.98, and ρf = 1, i.e., the only bias is that consumers become more sensitive to payment change

at larger ending digits, payments will bunch at $9-ending and there are very few $0-ending loans,

as shown in the top right diagram. This is because payments that would have ended at $0 (with $1

24I use 9 instruments for model estimation, including constant, loan amount, loan length, credit score, age, African
American percentage, Hispanic percentage, income, and average house value. With first and second order moment
conditions (Equation 7), there are a total of K = 9 · 2 = 18 number of moments.
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Figure 5: Bunching Patterns with Different Digit Bias Parameters

more) in the benchmark case will end up at $9 now. Also, the number of loans with larger ending

digits is increasing in the $10 range. Bunching at both $9- and $0-endings happens when consumers

and finance managers are both more sensitive to payment change with larger ending digits, as

shown in the bottom left diagram using parameters δc = 0, δf = 0, ρc = 0.95, and ρf = 0.9505. As

payment goes from $9- to $0-ending, consumers have a large payoff drop while finance managers

have a large payoff gain, leading to bunching at both $9- and $0-endings. In all of the above cases,

bunching at $99- and $00-ending digits are not more prominent, which is inconsistent with the data

observation (see Figure 1). The bottom right diagram of Figure 5 demonstrates the case when

δc = 1, δf = 0.995, ρc = 0.95, and ρf = 0.9505. That is, both consumers’ and finance managers’

payoff functions have a discontinuity at $100 marks. In this case, we observe a higher level of

bunching over $100 marks.
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4.3.3 Monte Carlo Study

I use a Monte Carlo study to show that the proposed estimation strategy can successfully recover

the true parameters. I simulate 100,000 loans by randomly drawing loan amount and loan length

from the data, and simulate the monthly payment for each loan from the model using the “true”

parameter values, as shown in Column (1) of Table 5.

Table 5: Monte Carlo Simulation

True
Parameters

Proposed
Estimation
Strategy

No Equality
Constraints

No Digit
Bias

ρc: Consumer’s payoff
curvature

0.8900 0.8911 0.8779
(0.0079) (0.0812)

ρf : Finance manager’s
payoff curvature

0.8915 0.8927 0.8799
(0.0094) (0.1048)

δc: Consumer’s payoff
discontinuity at $100

0.7400 0.7340 0.5552
(0.0861) (0.3108)

δf : Finance manager’s
payoff discontinuity at $100

0.7200 0.7141 0.5576
(0.0857) (0.3255)

uα: Bargaining power
constant

-0.7500 -0.7278 -0.7294 -0.6376
(0.0790) (0.0752) (0.0469)

σǫ: Standard deviation of
bargaining power

0.8190 0.8230 0.7626 0.7394
(0.0643) (0.0799) (0.0408)

β1: Loan amount in
bargaining power function

-0.0500 -0.0500 -0.0492 -0.0458
(0.00002) (0.0015) (0.0008)

β2: Loan length in
bargaining power function

0.2000 0.1969 0.1946 0.1764
(0.0131) (0.0120) (0.0075)

I estimate the model using the simulated data set. I use bootstrapping and perform the esti-

mation 100 times, each with 100,000 loans from resampling the data set. The average parameter

estimates from the 100 estimations and their bootstrapped standard errors are reported in Column

(2) of Table 5. The parameter estimates are very close to the true values, with small standard errors,

showing that the true model parameters can be recovered with the proposed estimation strategy.

Without using the equality constraints in equation (8), however, the digit bias parameters are

not well identified. Column (3) of Table 5 shows that δc and δf are underestimated. Furthermore,

all of the digit bias parameters have large standard errors. This shows that the payments bunching

data pattern, captured by the equality constraints of the number of loans at each ending digit, is

crucial to pin down the digit bias parameters.

Finally, even if researchers are only interested in estimating the distribution of consumers’ bar-

gaining power, accounting for digit bias in the payoff function is still important. To illustrate this

point, I estimate a bargaining model that imposes no bias for consumers or finance managers (i.e.

δc = 0, δf = 0, ρc = 1, ρf = 1). Results are shown in Column (4) of Table 5. The bargaining power
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estimates are significantly different from the true values, leading to incorrect inference of bargaining

power distribution among different consumer groups.

5 Results

In this section, I will first discuss model estimation results for digit bias and bargaining power

parameters. For the ease of computation, the model is estimated from a randomly selected sample

of 1 million loans. I will also discuss several alternative explanations for the observed data patterns.

Next, I will use the estimation results to conduct counterfactuals.

5.1 Model Estimation Results

Model estimation results are reported in Table 6. The first four parameters represent the digit bias

of consumers and finance managers. The curvatures of the payoff functions for both parties, ρc

and ρf , are significantly smaller than 1, indicating that the sensitivity to a $1 change in payment

increases with a larger ending digit (i.e., when payments are closer to the next $10 level), and it is

the highest when the payment moves from $9- to $0-ending. For consumers, the payoff drop for a $1

increase from a $9-ending payment is $1.27, significantly larger than $1. It represents the perceived

payoff difference between $9- and the next $0-ending payments, 10 − 101−ρc · (10− 9)ρ
c

. The gap

from a $1 change in payment monotonically decreases at smaller ending digits, and it is the smallest

from $0- to $1-ending payments at $0.90, significantly smaller than $1. The payoff function for

finance managers is similar to that of consumers.

Table 6: Estimation Results

Estimate Standard Error
ρc: Consumer’s payoff curvature 0.8963 0.0029
ρf : Finance manager’s payoff curvature 0.8981 0.0028
δc: Consumer’s payoff discontinuity at $100 0.7841 0.0311
δf : Finance manager’s payoff discontinuity at $100 0.7555 0.0307
uα: Bargaining power constant 5.1985 0.1401
σǫ: Standard deviation of bargaining power 1.1665 0.0098
β: Bargaining power covariates: 0.7200 0.7141
Loan amount (in $1000) -0.0264 0.0041
Loan length (in years) 0.0563 0.0054
Credit score -0.0090 0.0002
Age 0.0022 0.0013
Income (in $1 million) -1.2464 0.0634
African American percentage 0.5032 0.0433
Hispanic percentage 0.7147 0.0401
Average house value (in $1 million) -0.0614 0.0029
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There is a further discontinuity in the perceived payoff functions for both consumers and finance

managers when payments cross $100 marks, captured by δc and δf . For consumers, the perceived

difference for a $1 increase from $99- to $00-ending loans is $2.05, which equals the payoff drop of

$1.27 from $9- to $0-ending plus the additional discontinuity of δc = 0.78. The level of discontinuity

is similar for finance managers, whose perceived difference between $00- and $99-ending loans is

$2.02. The additional discontinuities in payoffs contribute to the higher levels of bunching around

$100 marks. The existence of the discontinuities is consistent with findings in the prior literature

in consumers’ payoff functions (e.g. Stiving and Winer 1997; Lacetera et al. 2012). I show that,

even for finance managers who have rich experience in negotiations, they are still prone to human

bias the same as consumers. This paper therefore adds to the existing literatures that document

psychological bias among professionals or experts in high-stake decision making, such as lawyers,

professional traders, and managers in a multinational corporation (Coval and Shumway 2005; Birke

and Fox 1999; Workman 2012; see Goldfarb et al. 2012 for a review of the behavioral models on

managerial decision-making).

The rest of the parameters in Table 6 govern the distribution of bargaining power among con-

sumers. The range of αi in equation (6) is between 0 and 1. After transformation, the average

bargaining power for consumers is 0.77. That is, the overall bargaining power of consumers is larger

than that of finance managers. One of the possible reasons is that, if the negotiation breaks down,

the dealer will lose not only the interest markup but also the profit from selling the vehicle and other

follow-up services. Consumers therefore may have more power when they negotiate financing terms.

Regarding other parameters, since Xi in equation (6) appears in the denominator, consumers’ bar-

gaining power is negatively correlated with the covariates that have positive parameter estimates.

Table 6 shows that the bargaining power is higher for consumers with a larger loan amount, shorter

loan length, and higher credit score. These results are quite intuitive. A consumer who needs a

larger loan amount is likely to purchase more expensive vehicles and thus can have more power

when negotiating financing terms. A loan request from a consumer with a higher credit score and

a shorter loan length is more likely to be accepted by more banks or credit unions, leading to a

higher consumer bargaining power. Note that these characteristics have been controlled for when

I estimate p̄(Xi) and p(Xi), thus the results imply that the monthly payments of those consumers

are distributed more densely toward the lower bound of the range.

Consumers who live in areas with lower average income, lower house value, and higher minority

representation, and consumers who are older have a lower bargaining power. The results for minority

consumers have a strong policy implication. To quantify the parameters, I compare the predicted

payments for an African American and a Hispanic consumer with that for a Caucasian consumer,

while holding the other variables at the sample average.25 Results show that the African American

25The payment for the African American (Hispanic) consumer is calculated by fixing the African American (His-
panic) variable to 1. The payment for the Caucasian consumer is calculated by fixing both African American and
Hispanic variables to 0.
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consumer pays 1.70%, or $443, higher total interest payment than the Caucasian consumer. This

number is close to that documented in Cohen (2012), who used class action litigation data from

five captive lenders to show that African Americans on average paid between $347 and $508 more

than Caucasians in markup. The Hispanic consumer’s payment is 2.50%, or $653, higher than that

of the Caucasian consumer, all else equal.

There can be multiple potential reasons why minority consumers are charged a higher markup.

The first is that there are measurement errors for the estimates of p̄(Xi) and p(Xi). Suppose

banks and credit unions charge a higher buy rate for minority consumers, the estimated p(Xi)

for these consumers is downward-biased and, as a result, the model will wrongly attribute their

higher monthly payments to the lower bargaining power. This, however, is inconsistent with the

institutional reality, as banks and credit unions cannot discriminate minorities when setting the

buy rate.26 Furthermore, they do not have information on the race of consumers when they eval-

uate loan requests. The second possible reason is that minority consumers are less resourceful or

less informed about alternative financing sources. Finally, the higher markup can be due to the

propensity to discriminate against African Americans and Hispanics among finance managers. If

so, finance mangers can be more aggressive when negotiating with minority consumers, who will

end up paying more than Caucasian consumers on average. I cannot disentangle which of these two

latter explanations is the real reason. Nevertheless, the results confirm the existence of a significant

payment gap for consumers with different races (and other characteristics such as income levels)

due to the discretionary dealer markup practice.

I simulate the monthly payment for each loan using the estimation results. Figure 6 plots the

number of loans at each payment level in the true and the simulated data. The two distributions

match quite well. In particular, simulated payments also bunch at $9- and $0-endings. In addition,

the number of loans increases from $1- to $8-ending payments within the $10 range.27 Finally, the

level of bunching at $99- and $00-ending payments is more significant around $100 marks.

In addition to matching the overall bunching patterns, the model also provides an explanation

for the heterogeneous levels of bunching among different consumer groups. As shown in Figure 4,

when the consumer’s relative bargaining power is high, which is the case in my empirical application,

low bargaining power consumers are more likely to get $9-ending loans. Since African American

and Hispanic consumers are estimated to have a lower bargaining power, they are more likely to get

$9-ending loans, which is consistent with the statistics shown in Table 2. Higher income and higher

credit score consumers, on the other hand, have a higher bargaining power and are less likely to get

$9-ending loans.

The same mechanism explains the systematic interest rate difference for $9- and $0-ending loans.

26Equal Credit Opportunity Act (ECOA), enacted in 1974, makes it unlawful for any creditor to discriminate
against any applicant on the basis of race, color, region, national origin, sex, marital status or age.

27I have imposed the equality constraints in the model estimation. In the simulation, however, I do not impose
any constraints. It still matches well with the data at each payment level. Also, the simulation replicates the overall
trend and not just the number of loans at different digits in data.
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Figure 6: Distribution of Monthly Payments for Actual and Simulated Data
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Given that low bargaining power consumers are more likely to get $9-ending payments, the average

interest rate for the loans will be higher than that for other loans. Similarly, consumers with $0-

ending loans have a higher bargaining power and therefore they have a lower interest rate on average.

From the simulated data, the difference in interest rate between $9- and $0-ending loans is 0.116%.

To further evaluate the model performance, I estimate the bargaining model with two alternative

payoff specifications. They differ in how to incorporate the digit bias within the $10 range. In the

first alternative specification, payoffs change linearly within the $10 range, with a discrete drop in

payoffs occurring over $10 marks. This specification is similar to the ones used in Lacetera et al.

(2012) and Stiving and Winer (1997). Although this model can successfully replicate the bunching

patterns in simulations, it fails to replicate the increase from $1- to $9-ending loans (Figure 1). The

second specification uses an alternative functional form to capture payoff curvature within the $10

range. Although this model can generate the increase from $1- to $9-ending loans as well as the

bunching patterns at $9- and $0-endings, the fit is clearly not as good as the main model. Details

are discussed in Appendix C.

5.2 Alternative Explanations

The proposed model is built upon the assumptions that consumers and finance managers negotiate

monthly payments and that both parties have digit bias. I have shown how the model can explain

the unique patterns in data. However, there may be other explanations that can also rationalize
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the patterns. In this sub-section, I will discuss several alternative explanations.

Promotional effects. Auto dealers may run promotions with advertised payments ending at $99

or $00. This may explain why the bunching phenomenon exists. If this is the reason, however, there

should be no systematic difference in the interest rates for these two types of loans. In particular,

the interest rate for $99-ending loans should not be higher than other loans. Furthermore, it cannot

explain why there is an increasing number of loans with larger ending digits. In addition, I find

from data that the bunching phenomenon is quite stable over time. This is in contrast with auto

dealer promotion activities that are periodic in nature.

Consumer bias only. One may attempt to come up with a more flexible consumer payoff function

in lieu of finance manager bias to explain the data patterns. Suppose consumer payoffs have a large

drop from $9 to $0 as well as from $0 to $1, payments can bunch at both $9- and $0-endings.

However, such specification would imply that the average interest rate for $0-ending loans is higher

than $1-ending loans. This is inconsistent with the empirical evidence, as $0-ending loans actually

have the lowest interest rate. Without allowing finance managers to also have the digit bias, it is

difficult to rationalize the large difference between the interest rates for $9- and $0-ending loans.

Focal point effect. Alternatively, one may attribute the $0-ending bunching to a focal point

effect. Based on this explanation, the roundedness of the payments may facilitate negotiations,

which will lead to a higher number of loans at $0-ending. However, this explanation cannot explain

bunching at $9-ending digits. It also cannot explain why $0-ending loans have the lowest average

interest rate.

Finally, one may question the validity of the key model assumption that bargaining leads to

the observed bunching phenomenon. I have argued that the discretionary dealer markup policy

in the auto finance market means that there is room for negotiating monthly payments. I run

a “placebo” test using data from the mortgage loan market also provided by Equifax Inc. The

dataset consists of 7.3 million mortgages originated in 2014 across the United States. Similar to

auto loans, mortgage loans are an important consumer installment loan with monthly payments.

The discretionary markup policy, however, does not exist in the mortgage loan market. Loans are

directly provided by banks or credit unions and are subject to much tighter regulations. Therefore,

the monthly payments do not come from a bargaining setting where digit bias could play a role. I

find no evidence for the bunching phenomenon in data. The proportions of monthly payments at

$0- and $9-ending digits are both exactly 10%. There is also no difference in the APR for loans

ending at $0 or $9. These results support for the bargaining assumption in the proposed model that

applies to the auto loan market.

30



5.3 Counterfactuals

I use the model estimates to investigate two issues using counterfactual analysis. The first is

to explore the welfare implication of digit bias in bargaining by quantifying the change in loan

payments because of digit bias. The second is to quantify the payment changes under alternative

non-discretionary markup policies for minority consumers.

5.3.1 Welfare Implication of Digit Bias in Bargaining

Even though bias with numbers may be a human tendency, there are potential ways to mitigate

their influence on the decision making process. In the auto finance setting, for example, dealers may

direct the attention of finance managers away from the monthly payment and highlight the total

markup profit or interest rate instead, so that managers will no longer be influenced by the bias.

Likewise, financial education for consumers may help de-bias their perception of numbers.

To explore the welfare implication of digit bias, I construct a counterfactual payoff function

without digit bias and use it as the benchmark case. The payoff functions are linear and continuous

everywhere, with payoff changing by $1 for each $1 increase in payment. I set the parameters δ′s to

0 and the parameters ρ′s to 1. With these adjustments, however, the overall payoff levels are also

changed. For example, without the discontinuity over $100 marks, the consumer payoffs will become

higher than the estimated payoff function. To remove the effect from this level change, I adjust the

constant term in the counterfactual payoff function, so that the payoff at any loan payment level

is the same under the initial and the counterfactual payoff functions.28 By doing so, the difference

in payments reflects the impact of non-standard payoff functions with curvature and discontinuity

instead of changes in the level of payoff.

Digit bias is beneficial for the party with the bias in bargaining. I compare the payments with

the estimated bias to those in alternative scenarios where either consumers or finance managers, or

both, have the digit bias. The difference in payments represents the impact of the bias. Results are

shown in Table 7. Panel A reports the change in payments when consumers are biased (but not

finance managers), relative to the benchmark case without bias. Biased consumers will pay 0.025%

less, with total payments reduced by $203 million. Therefore, consumers’ digit bias is beneficial for

consumers by lowering their payments.

The result that consumers pay less when having the digit bias is counter-intuitive. One may

view bias as a negative factor in the bargaining process by intuition. For example, since consumers’

digit bias leads to bunching at $9 with a higher interest rate, one may conclude that removing such

bias should benefit consumers. This intuition is in general supported in the psychological literature,

28The procedure is done in several steps. First, I simulate the monthly payment for each loan using the estimates
from the proposed model with digit bias. I calculate the perceived payoff value, and then adjust the constant term
in the counterfactual payoff function so that the payoff of the simulated payment is the same under the biased and
the counterfactual de-biased payoff functions. Lastly, I simulate the counterfactual payments for each loan using the
adjusted de-biased payoff functions.
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Table 7: Effect of Digit Bias on Payments

Bargaining Power Percentile (from High to Low)
Overall 0 – 20% 20 – 40% 40 – 60% 60 – 80% 80 – 100%

Average Bargaining Power 0.77 0.96 0.90 0.83 0.70 0.44
Panel A: Effect of Digit Bias for Consumers (Finance Managers not Biased)

Change in Total Payment ($million) -202.9 -12.2 -22.4 -41.5 -61.9 -65.0
% Change -0.025% -0.007% -0.014% -0.026% -0.039% -0.040%
Panel B: Effect of Digit Bias for Finance Managers (Consumers not Biased)

Change in Total Payment ($million) 101.9 10.4 16.7 22.5 28.0 24.3
% Change 0.013% 0.006% 0.010% 0.014% 0.018% 0.015%
Panel C: Effect of Digit Bias for Both Consumers and Finance Managers

Change in Total Payment ($million) -33.0 0.5 -4.0 -7.5 -10.6 -11.35
% Change -0.004% 0.0003% -0.002% -0.005% -0.007% -0.007%

where biases are generally considered to make people worse off. Researchers often propose ways to

de-bias consumers for a better decision-making strategy (Larrick 2004). Furthermore, studies of the

9-ending retail prices in the marketing literature implicitly suggest that firms can take advantage

of consumers’ digit bias to charge a price higher than when the bias does not exist. My results

show the opposite. The key difference from the previous literature is that in this study prices

(monthly payments) are set through two-sided negotiations and not decided by firms as in other

retail settings. With bias, the perceived drop for $1 increase in payment from $9-ending is larger

than $1, especially over $100 marks. The large drop in payoff makes it harder for finance managers

to push the payments higher from $9-ending. In other words, the bias creates a psychological hurdle

for consumers so that they are more resistant to payments crossing the hurdle. Although the bias

in the payoff function at small ending digits has the opposite effect (since the perceived drop for

$1 increase is smaller than $1 at those digits), overall the first effect prevails and consumers benefit

from having the digit bias.

Having digit bias is also beneficial for finance managers. As shown in Panel B of Table 7,

when compared with the benchmark case, dealers will receive 0.013%, or $102 million, higher loan

payments when their finance managers are biased (and consumers are not). The reason is similar

– the large drop in payoff for $1 change from $0-ending digits, especially at $100 marks, makes it

hard for consumers to push down payments from $0-ending. Although the bias also makes it easier

for consumers to push down payments at smaller ending digits, the total effect is still positive for

finance managers. When both parties are biased, consumers will pay 0.004%, or $33 million in total,

less compared to the benchmark case.

The effect of digit bias is systematically different for consumers of different bargaining power.

In the empirical application where the consumer bargaining power is overall high, the decrease in

payments for biased consumers is more significant among low bargaining power consumers. For
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example, Panel A of Table 7 shows that 32% of the total decrease comes from consumers whose

bargaining power is at the bottom 20th percentile, while only 6% is from consumers whose bar-

gaining power is at the top 20th percentile. The effect of bias is stronger for low bargaining power

consumers because they are the ones mostly likely to get $9-ending payments. When both parties

have digit bias, consumers with the bottom 20th percentile bargaining power pay $11.4 million less

loan payments. In contrast, consumers with the top 20th percentile bargaining power will pay $0.5

million more.

Because of the discretionary dealer markup policy, low bargaining power consumers pay higher

markups than high bargaining power consumers do. Consumer’s digit bias, however, helps reduce the

gap in markups between the two types of consumers. For example, Table 7 shows that, consumers’

digit bias reduces the difference in the markup between consumers with the top 20th and bottom

20th percentile bargaining power by 0.29%, or $52.9 million in total. Similarly, the gap is reduced

by 0.06%, or $11.8 million in total, when the bias exists for both consumers and finance managers.

5.3.2 Non-Discretionary Dealer Markups

The discretionary markup policy in the auto loan market is controversial and has been under intense

regulatory scrutiny. A series of class-action lawsuits were filed challenging this practice against

most of the captive auto lenders in the U.S. as well as some large auto lending financial institutions

(Munro et al. 2004). Since created in 2011, the Consumer Finance Protection Bureau (CFPB) has

taken action against several large auto lenders with large settlements.29 These lawsuits claimed

that the practice authorizes dealers to charge subjective markups that result in disparate impact

among minority consumers. My estimation results provide evidence in support of these claims. In

this section, I investigate the effects of two alternative policies that compensate dealers with non-

discretionary markups, and quantify the change of payments for minority consumers. I also show

that, without considering the influence of bias in the bargaining model, one would underestimate

the impact of the policy changes for minority consumers.

Under non-discretionary markup compensation policies, markups do not vary among consumers

because of the difference in their relative bargaining power. Minority consumers would be charged

the same markup as their Caucasian counterparts, all else equal. Under the first counterfactual

policy, auto dealers are compensated by a fixed percentage of the loan amount,30 so that consumers

with the same loan amount get the same level of markup. The markup percentage is calculated to

be at the level that the total amount that auto dealers make from arranging auto financing is the

same as under the current discretionary markup compensation. Under the second policy, the level

of markup is a fixed percentage of the bank buy rate that is based on credit score, loan amount,

29For example, Ally Financial Inc. paid $98 million for the settlement in 2013, and Honda paid $24 million in
2015.

30One bank had adopted this compensation policy, citing the CFPB’s guideline as the reason, but later reverted
back to the discretionary markup practice.
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and loan length but not on consumer demographics such as ethnicity. Similarly, the percentage is

calculated to achieve the same level of total dealer markup profit as under the current compensation

policy. Both of these counterfactual policies are easy to implement in practice. Dealers are not worse

off under the counterfactual policies because of the same level of markup profit. Since the bank buy

rate does not change, banks and credit unions are also not worse off.

Under the non-discretionary markup compensation, there is a shift in the consumer payments

among different groups of consumers. Not surprisingly, low bargaining power consumers benefit from

the non-discretionary policies. Table 8 reports the change in payments for consumers in different

racial groups under the new policies. When dealers are compensated by a fixed percentage of the

loan amount, consumers from predominantly African American areas (i.e. with more than 40% of

the population) pay 1.37% lower total payments, and consumers from high Hispanic population

neighborhoods (i.e. with more than 40% of the population) pay 1.35% lower total payments. The

aggregate payment decrease among minority consumers is quite substantial, with $452 million in

total for African American consumers and $275 million in total for Hispanic consumers. When

dealers are compensated by a fixed percentage of the bank buy rate, the reduction in payments

is slightly higher, with $473 million in total for African American consumers and $300 million in

total for Hispanic consumers. In contrast, consumers from predominantly Caucasian neighborhoods

(i.e. with more than 97% of the population) under the counterfactual policies will have to pay

$445 million and $484 million more. To conclude, the new non-discretionary policies will have a

significant economic benefit for minority consumers, while Caucasian consumers will pay a higher

monthly payment to compensate for the policy change.

Table 8: Counterfactual Results from Non-Discretionary Dealer Markups

Change in Payment
under Non-discretionary
Markup Compensation

Fixed Markup by Loan Amount) Fixed Markup by Bank Quote
Total

Payment
($million)

Total
Payment

(%)

Payment
per Loan

($)

Total
Payment
($million)

Total
Payment

(%)

Payment
per Loan

($)
Predominantly African
American Areas (>40%)

-451.8 -1.37% -373.8 -472.6 -1.44% -391.0

Predominantly Hispanic
Areas (>40%)

-274.5 -1.35% -373.4 -300.3 -1.47% -408.5

Predominantly
Caucasian Areas (>97%)

444.9 0.48% 120.2 483.9 0.52% 130.8

I have shown that, if the digit bias is not incorporated in the bargaining model, the bargaining

power estimates will be biased. Consequently, the counterfactual estimates about payment changes

will be biased. For the first non-discretionary markup compensation, I find that the payment

changes from African American consumers are underestimated by $36.8 million, or 8.1%. Similarly,

the payment changes from Hispanic consumers are underestimated by $12.1 million, or 4.4%. The
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results are similar for the second non-discretionary markup compensation, with the payment changes

underestimated by $36.7 million for African American consumers and $11.8 million for Hispanic

consumers if the digit bias were not considered. This comparison suggests that the proposed model

is important to correctly quantify how the current discretionary dealer markup policy has caused

over-payments from minority consumers.

6 Conclusion and Discussion

This paper investigates how digit bias affects bargaining outcomes in the auto finance market. The

proposed bargaining model that incorporates digit bias from both consumers and finance managers

can explain the puzzling data patterns of bunching payments and differential interest rates. I use

a large data set of 35 million auto loans in this study. Two types of bias in the payoff function are

identified: a larger perceived difference from $1 change at larger ending digits and an additional

payoff discontinuity between $99- and $00-ending payments. Counter-intuitively, digit bias is found

to be beneficial for the party with the bias in bargaining. Consumers will pay less because of their

digit bias. Similarly, auto dealers will receive a higher markup profit when their finance managers

have digit bias.

From the policy perspective, this paper sheds light on the debate about the discretionary markup

practice in the auto finance market. I evaluate alternative non-discretionary policies, where dealers

are compensated by a fixed percentage of loan amount or bank buy rate, and quantify the economic

impact of the policy changes for minority consumers. Counterfactual suggests that African American

consumers pay $452-473 million more in total payments, and Hispanic consumers pay $275-300

million more in total payments than they would under a non-discretionary policy. Incorporating

bias is important in recovering unbiased bargaining power estimates. Failure to do leads to the

change in payments to be underestimated by $37 million for African American consumers and $12

million for Hispanic consumers.

The insights from this study have broad implications beyond the auto finance market. Knowing

that digit bias exists not only among consumers but also among employees can be useful for firms

to better understand what factors drive negotiated prices in many other settings, including estate

sales, auto sales, online retail platforms (e.g., Taobao.com in China), and B-to-B environments

where price negotiations are common. The result that consumers’ perceived value has a large drop

when crossing a threshold suggests that $9-ending prices are stickier than other digits in most retail

environments. Beyond $9-ending prices, the result that consumers’ sensitivity toward price change

is lower at small digits also suggests that the demand elasticity may vary across different ending

digits in the price.

Although I use a representative-agent framework to model bias, the model can be generalized to

incorporate richer heterogeneities. In the proposed model, digit bias and bargaining power jointly

determine the level of bunching. Suppose there is a large variation of bunching across different
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consumer groups beyond what could be explained by the difference in their bargaining power, the

remaining variation can be attributed to the heterogeneity in digit bias. This is not the case in my

empirical application. Thus, the bias parameters are assumed to be the same for simplicity.
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A Appendix

A.1 Calculate Auto Loan APR

For each auto loan, I observe loan amount, loan length and scheduled monthly payment. The implied
APR (annual percentage rate) can be backed out from these three attributes. The discounted value of each
monthly payment sums to the loan amount. For a given loan amount and loan length, the higher the APR
is, the larger the scheduled monthly payment is.

pmt
1 + r

+ · · · +
pmt

(1 + r)n
= amount

pmt is the scheduled monthly payment, r is APR
12

, n is the length of loan in months, and amount is the loan
amount.

Rearranging terms, I get:

pmt · [(1 + r)n − 1]− amount · r · (1 + r)n = 0

I solve for APR r by newton’s method. Let f(r) = amount · r · (1 + r)n − pmt · [(1 + r)n − 1]. The first
order derivative of f(r) is f ′(r) = amount · n · (1 + r)n−1 · r + amount · (1 + r)n − pmt · n · (1 + r)n−1.

Starting from an initial guess of r0 = 6, I calculate the next approximation r1.

r1 = r0 −
f(r0)
f ′(r0)

The process is repeated as

rk+1 = rk −
f(rk)
f ′(rk)

until rk+1 and rk are sufficiently close, |rk+1 − rk| < e−10.

A.2 APR Analysis with Machine Learning Method

The regression model suggests that the loan APR is systematically different depending on the monthly
payment ending digit. For robustness, I have also implemented a machine learning method, Extreme Gradient
Boosted Trees, to predict APR based on the following features, credit score, loan amount and length. Boosted
tree models bootstrap a multitude of decisions trees, and the final prediction is based on an aggregate across
multiple trees. Decision tree types of algorithms consider complex interactions among features, which may
be hard to accommodate with a traditional regression approach. It does so in a way that balances in-sample
accuracy and out-of-sample prediction. The sample is randomly partitioned into training, validation and
testing sample. Various models are trained on the training data set, and the one that performs the best on
the validation data set is selected, which prevents over-fitting. Finally, in the testing sample, the selected
model is used to predict APR with observed features, including credit score, loan amount and loan length.
The difference of the actual APR and the predicted APR in the testing data set is used to assess whether
APR is systematically different for loans with different ending digits. The results are close to those from
the regression model. In the testing data set, the APR for $9-ending loans is 0.039% higher than predicted,
and it is 0.023% lower for $0-ending loans than predicted. The difference between the two is 0.062%. More
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generally, the APR is higher for loans with larger ending digits from $1 to $9.

A.3 Alternative Payoff Specifications

In this appendix, I present and discuss results from two alternative payoff specifications.

A.3.1 Direct Discontinuity

In this alternative specification, the payoff function is linear within the $10 range, with a discrete drop in
payoff when payments cross $10 marks. The discrete drop captures the bias that the perceived difference
between $9- and $0-endings can be larger than 1. Let d1(p) be the hundreds digit, and d2(p) be the tens
digit of payment p, e.g., d1(234) = 2, d2(234) = 3. Let δc1 and δc2 denote the level of payoff discontinuity at
$10 marks and $100 marks respectively. Consumer’s payoff function is

uc(pi) = −pi + δc1 · [(10�d1 (p̄(Xi)) + d2 (p̄(Xi)))− (10�d1 (pi) + d2 (pi))] + δc2 · [d1 (p̄(Xi))− d1 (pi)]

Figure 7 (left) shows an example of the consumer’s payoff function.

Figure 7: Payoff Functions with Direct Discontinuity
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Finance manager’s payoff increases as the monthly payment increases, with payoff discontinuity of δf1
and δf1 + δf2 at $10 marks and $100 marks respectively. Finance manager’s payoff function is

uf (pi) = pi + δf1 ·
[

(10�d1 (pi) + d2 (pi))−
(

10�d1

(

p(Xi)
)

+ d2

(

p(Xi)
))]

+ δf2 �
[

d1 (pi)− d1

(

p(Xi)
)]

.

Figure 7 (right) shows an example of the finance manager’s payoff function.
I estimate the model and simulate payments for each loan with the parameter estimates. Figure 8

presents the numbers of loans at each level of simulated payments. Although this model can successfully
reproduce the bunching at $9- and $0-endings, with the payoff function being linear within each $10 range,
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it fails to capture the digit bias within the $10 range and cannot reproduce the increasing pattern from $1
to $9 (Figure 2).

Figure 8: Monthly Payments for Simulated Data with Direct Discontinuity
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A.3.2 Alternative Payoff Curvature Specification within the $10 Range

The empirical observation of an increasing number of loans from $1- to $9-ending motivates a payoff speci-
fication with curvature. Consider an alternative way to specify the payoff curvature:

uc(pi) = −pi + δc · [h (p̄(Xi))− d (pi)] +
(

(pi − ⌊pi⌋10)− 101−ρc
· (pi − ⌊pi⌋10)

ρc)

Same as the main model, δc captures the level of perceived value drop when payment p crosses $100
marks. ⌊p⌋10 rounds down payment p to the nearest $10 level, ⌊p⌋10 = ⌊ p

10
⌋10 · 10, e.g., ⌊$234⌋10 = $230. ρc

governs the amount of payoff curvature within the $10 range. Figure 9 shows examples of the consumer’s
payoff function. When ρc > 1, the perceived difference for a $1 change in payment is larger with a larger
ending digit, and the opposite is true when 0 < ρc < 1.

Finance manager’s payoff function is analogous to the consumer’s payoff function, with ρ^f governing
the payoff curvature within the $10 range.

uf (pi) = pi + δf ·
[

h (pi)− d
(

p(Xi)
)]

+
(

101−ρf
· (pi − ⌊pi⌋10)

ρf

− (pi − ⌊pi⌋10)
)

Model estimates under this alternative payoff specification suggest that the consumer’s payoff function
is concave with ρc = 1.1039, which is associated with greater sensitivity to payment change as the payment
gets closer to the next $10 level, same as the main model. Figure D5 presents the numbers of loans with
each level of simulated payments. Although this model can reproduce the increasing pattern from $1 to $9,
the fit is not as good as the main model.
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Figure 9: Payoff Functions with Alternative Curvature Specification
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Figure 10: Monthly Payments for Simulated Data with Alternative Curvature Specification
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