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Abstract

We integrate a neuroeconomic concept of habit into a consumer choice

model. We propose that habit represents a distinct decision-making mode in

which past choices are automatically repeated, in contrast with state-dependent

utility maximization; transitions between these decision modes are governed by

the reliability of a reinforcement learning algorithm, such that habits arise when

the choice environment is sufficiently stable. We estimate and test this model on

product choice in the canned tuna category between 2006 and 2010, a period of

considerable price and product variation which included a package down-sizing

event. We find that a substantial proportion of choice persistence is due to a

habitual automation of consumption, in addition to a degree of state-dependent

utility.
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1 Intro

Habits are an important feature of human behaviour. They are not merely

prevalent. There is also a wide and implicit recognition of their significance to

our well-being, for better or worse. As noted by Gary Becker, “. . . the main

reason habitual behavior permeates most aspects of life is that habits have an

advantage in the biological evolution of human traits” (Becker, 1996, pg. 9).

A hallmark of a habit is that behaviour is persistent over time. In economic

settings, this manifests as the empirical observation that present consumption

often increases with past consumption. The predominant theoretical expla-

nation for this persistence is inter-temporal complementarity in preferences,

whereby a consumer’s (marginal) utility for a good increases with past con-

sumption of the good (e.g. Pollak, 1970; Ryder and Heal, 1973; Becker and

Murphy, 1988; Crawford, 2010). This explanation also underlies an empirical

literature examining ‘state-dependent utility’ in consumer choice — modeled

as a positive effect of past consumption on current utility (Heckman, 1981;

Keane, 1997; Shum, 2004; Seetharaman, 2004; Dubé et al., 2010; Thomad-

sen and Seetharaman, 2018; Kong et al., 2022).1 Such persistence has been

documented over a wide variety of product categories with important welfare

implications because it provides a means for market leaders to leverage market-

share. For example, Bronnenberg et al. (2012) find substantial persistence in

the brands consumers buy across geographic regions, with 40% of variation in

1When paired with an assumption of rational expectations, state-dependent utility yields a con-
sumer who foresees their habit formation and adjusts their consumption accordingly, i.e. a ‘rational
addiction’ as proposed by Becker and Murphy (1988). Empirical tests of this claim are reported by
Laporte et al. (2017); Auld and Grootendorst (2004); Olekalns and Bardsley (1996). As discussed
by Landry (2019), however, the “adjacent complementarity” on which rational addiction theory is
based is not empirically supported — only “distant complementarity” over longer time horizons is
observed — in the realm of addictive consumption.
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market shares due to persistent brand preferences and only 60% due to new

supply conditions.2

While a state-dependent utility model can capture choice persistence, we

argue that it is not a sufficient definition of habit. As one example, a state-

dependent utility model explicitly assumes that prices and other attributes in

the utility specification are collected and compared on every choice occasion.

This assumption nullifies one of the primary benefits of a habit: that seemingly

complex actions can be automated with minimal cognitive resources. It im-

plies that all consumption occasions, even habitual ones, are utility-maximizing,

and that a single measure of price elasticity is sufficient for capturing demand

changes no matter how small or large the price change.

We study a model of habitual consumption behavior based on findings in

psychology and neuroscience, and compare it to the existing state-dependent

utility approach. Despite decades of research, there has been minimal integra-

tion of psychological habit research into economic discourse. In psychology,

habits are considered a specific form of automatic behaviour which is directly

cued by contexts that have been learned to be rewarding over time (Siegel et al.,

1982; Wood and Neal, 2009). Building on this definition, Landry et al. (2021)

introduce a theory of habitual choice based on the finding in neuroscience that

the reliability of ‘reward prediction errors’ guide human and animal learning.3

2The degree of persistence is weaker for people who moved when they were younger. Consistent
with this finding, brand loyalty is generally shown to be stronger among older consumers (Lambert-
Pandraud & Laurent, 2010). Bronnenberg et al. (2012) report an estimate of the utility weight of
past consumption vs. current attributes of 37%.

3A foundational empirical result in neuroeconomics is the existence of a reward prediction error
(RPE) signal encoded via dopamine neurons (Schultz et al., 1997). This signal compares rewards
to expectations and forms the basis of a reinforcement learning computation in instrumental and
conditioned learning tasks. Lee et al. (2014) demonstrate the existence of an unsigned RPE signal
which arbitrates between conditioned responses and more goal-directed planning systems.
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Two modes of decision-making are proposed: a “habitual” mode in which the

previous choice is automatically repeated, and a “model-based” mode in which

utility is maximized using all available information.4 To arbitrate between

these systems, the consumer forms utility predictions and tracks their relia-

bility. The consumer enters a habit when utility predictions are sufficiently

reliable (i.e. when choice outcomes match predictions) and exits habit mode

when there is sufficient doubt about these utility predictions.

One key prediction of Landry et al. (2021) is that small shocks to utility,

or equivalently small price changes, can be insufficient to jolt a consumer out

of their habit. When the choice environment is relatively stable, habits will be

formed quickly. However large utility shocks (or relatively unstable prices) will

cause consumers to re-optimize their consumption patterns. The theory can

therefore predict that the price elasticity of demand differs depending on the

size of the price change. It also implies periods of seemingly “sub-optimal” per-

sistent behaviour that is rectified after large shocks to the choice environment.

In this paper, we adapt the Landry et al. (2021) theory of habit formation

as an empirical consumer choice model and apply it to analyze a tumultuous

period for the canned tuna industry. In 2008, canned tuna producers shrunk the

size of their cans in the US market from 6oz to 5oz, with the introduction of the

5oz cans staggered across brands and stores. This downsizing event occurred

in a product category that, in previous years, had been relatively stable, and

preceded a significant adjustment in prices and relative market share between

4The modelling assumption that habit-based choice is completely “automatic” while model-based
choice is perfectly rational is intended to highlight the distinction between the two systems as
conceptualized in the psychology literature (Wood et al., 2021). In practise, the model-based system
might not appear “perfectly rational” due to the presence of search costs or other informational
issues which contribute to the agent mis-identifying the seemingly optimal choice (as in case of the
Brazilian beer market or the London Tube examples, see footnote 6).
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brands. Both factors make it ideal to test a model of how fluctuations and

instability in the choice environment can lead to broken habits. We therefore

estimate a structural model of habitual choice that provides a direct test for

habitual decision-making as well as an estimate of the proportion of consumers

who are habitual in any given period, and compare this model to the state-

dependent utility account of choice persistence.

We find that a considerable degree of choice persistence in canned tuna

consumption is due to habitual automation of choice behaviour. While we

do still observe a degree of state-dependent utility, it is roughly 40% smaller in

magnitude when we allow for habitual autopilot. This suggests that the welfare

implications of persistence is more pronounced than previously thought, and

provides a stronger justification for policies that increase variation in the choice

environment. Overall, we estimate that 12% of consumers are in a habit before

the can size change, dropping to 10% during the can introduction, with roughly

17% of habitual consumers exiting a habit during the new can introduction.

Our study relates to a number of different literatures in the social sciences.

One recent literature addresses the identification of boundedly rational choice

models that can yield choice persistence. Cerigioni (2021) studies the identifica-

tion of dual-process models in which choices are automatically repeated when

choice environments are sufficiently “similar” to each other, motivated from

cognitive psychology research on perceptual fluency. He shows this similarity

function is identified from choices, in principle, under the assumption that it is

shared across a large population of consumers. By contrast, our doubt stock is

defined over an accumulation of utility prediction errors over time, consistent

with the observation that habits are learned via reward associations and are
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not formed immediately.5 Our neuro-autopilot model is also related to limited

consideration models in behavioural decision theory (Masatlioglu et al., 2012;

Manzini and Mariotti, 2014), in particular the class of “default specific consid-

eration” models studied by Abaluck and Adams-Prassl (2021). The difference

is that the automated choice reflects past learned utilities, rather than a de-

fault. Our model can be similarly identified from own and cross-price elasticity

asymmetries.

Matysková et al. (2020) show that persistent choices can be an optimal

response to costly information acquisition, using the dynamic rational inatten-

tion framework of Steiner et al. (2017). In a highly-controlled lab experiment,

subjects demonstrate persistence in their choices when states of the world are

serially correlated, and this persistence disappears when states are indepen-

dent. On a grander scale, Giuliano and Nunn (2021) argue that persistence in

cultural norms are transmitted over generations in societies where the environ-

ment is more stable. Our data provide evidence for this trade-off at the level

of an individual consumer: individual behaviour becomes persistent when the

choice environment is stable and more sensitive to observables (like price) when

it is more unstable.

Finally, a number of papers examine consumer preference in settings where

a period of forced experimentation leads to an apparent improvement in con-

sumer welfare. For example, Larcom et al. (2017) find that a temporary two-day

labour strike forced some London tube riders to explore alternative commutes,

5Like Cerigioni (2021), we understand that both environmental context and reward processes are
important for forming (and breaking) habits. The cognitive psychology and neuroscience literature
has also long emphasized the importance of contextual cues (e.g. locations and social groups) in
habit formation (Wood and Neal, 2009; Wood et al., 2021). Similarly, the number and frequency
of learned reward associations is a key determinant of habitual behaviour in animals and humans
(Adams and Dickinson, 1980; Pool et al., 2021).
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leading 5% of commuters to discover a more-preferred alternative to their old

habit. This suggests that the original behaviour was not optimal by revealed

preference, nor were the magnitude and prevalence of the time savings ratio-

nalizable with search costs.6 Larcom et al. (2017) speculate that this forced

experimentation jolted commuters out of their habitual commute. Our the-

ory provides an explanation for how sub-optimal choices can persist in stable

environments, but then corrected after a shock leads to re-optimization.

2 Model

At each period t = 1, . . . , T , a consumer i faces a choice among J products,

indexed by j = 1, . . . , J . The utility from choosing product j in period t

is denoted by uj,t, while the consumer’s period-t choice is denoted by yt ∈

{1, . . . , J}. Since the model is consumer-specific, we drop the i subscript here

and re-introduce it for estimation in Section 2.

We assume that the consumer implicitly forms predictions regarding the

value of each product based on past utility realizations. These reward predic-

tions, denoted by rj,t for product j in period t, evolve according to

rj,t =











(1− ρ)rj,t−1 + ρuj,t−1, j = yt−1,

rj,t−1, j 6= yt−1,

(1)

with 0 ≤ ρ ≤ 1. Under (1), the consumer’s reward predictions for a particular

product is updated if and when that product is chosen, where the new reward

6 In another example, after an earthquake in Chile led to a stock-out of leading beer brands, six
percent of the most-frequent buyers of these brands stopped purchasing them persistently, and a
substantial fraction of consumers experimented with new brands and did not switch back (Figueroa
et al., 2019).
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predictions is a weighted average of the previous reward prediction and the re-

alized utility from their choice. If ρ = 1, then utilities are learned immediately.

Next, we assume that the consumer tracks the reliability of these reward

predictions through a category-level doubt stock, dt, that evolves according to

dt = (1− λ)dt−1 + |uj,t − rj,t| for j = yt−1 (2)

with 0 ≤ λ ≤ 1. Under (2), the doubt stock is updated based on the magni-

tude of the current reward prediction error for the previously chosen product:

|uyt−1,t − ryt−1,t|.
7 A large deviation between the utility of the product and the

associated reward prediction thus increases the consumer’s “doubt” in their pre-

diction. As λ grows, past comparisons matter less in constructing the current

doubt stock. Note that if ρ = 1, then the doubt stock simplifies to an accumu-

lation of comparisons between current and past utilities, |uyt−1,t − uyt−1,t−1|.

Lastly, we assume that the consumer uses habit-based choice — in which

the consumer simply repeats their choice in the previous period — if the doubt

stock is below some threshold θ ≥ 0; otherwise, the consumer maximizes utility.

Formally,

yt =











yt−1, dt < θ,

arg max
j∈{1...J}

{uj,t}, dt ≥ θ.
(3)

By allowing the use of habit to depend on the current doubt stock (rather

than lagged) ensures that current price and quality shocks can break a habit.

7The specification contains two departures from the original theory of Landry et al. (2021). First,
we specify a single category-level doubt stock rather than a doubt stock for each product. Second, we
allow current period’s utility to increase doubt. These changes allow the consumer to immediately
recognize that the product has changed (due to a can size change or price change) and exit habit
mode in the current period. Results for the multiple doubt stock model are reported in Appendix
C where we observe a small, but significant, improvement in fit. The conclusions from this model
are similar.
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So a consumer who is inspecting a new can, or is exposed to a new price promo-

tion, can use this information in their immediate purchase decision. However,

the consumer’s ability to respond, or attend to, utility or price shocks for pre-

viously unchosen items may be limited. If the doubt stock associated with the

consumer’s previous choice is sufficiently low, the consumer will not actively

seek information about other products.

Note that (3) reduces to a standard random utility choice model if θ = 0.

This suggests that the hypothesis of a ‘habitual automaticity’ can be directly

tested through a log-likelihood comparison to a Logit model (which may or

may not include a state-dependent component). In this model, all changes

in observables (e.g. prices) alter the choice probabilities on all purchase occa-

sions. By contrast, when θ > 0, sufficiently small price changes for the chosen

product, and all price changes for unchosen products, will not effect the choice

probabilities of habitual consumers. We will elaborate on this test in Section

4.2.1.

2.1 Simulated Example

Figure 1 illustrates the model applied to a choice between two products with

utilities that vary over time. In the initial periods, the consumer collects in-

formation, chooses the product with the highest utility, and forms a prediction

about the utility of the chosen product for next period. Since the environment

is relatively stable, prediction errors are small and the doubt stock gradually

drops below threshold, with a habit formed for product 1. While in habit mode,

the consumer only attends to the utility of their consumed product to assess

the reliability of their utility predictions. Therefore during period 25–49 they
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are unaware that other products may have improved since they last made an

active choice. However in period 50, the chosen product undergoes a utility

shock that is immediately recognized by the consumer (e.g. a new can is in-

troduced). The doubt stock increases, jolting the consumer out of habit mode,

and back into utility maximization. The consumer continues to maximize util-

ity for multiple periods while learning that prediction errors are small again,

eventually forming a habit for product 2.

Note that, in this example, relatively more time is spent in habit mode than

in maximization mode. This occurs because the choice environment (utilities)

are relatively stable, with only infrequent shocks to the utility of chosen items.

It is this relative stability that allows the consumer to “switch to autopilot”

and avoid the associated costs of active information processing that is required

to make a utility maximizing choice (e.g. assessing the prices or ingredients of

all products). In effect, choice in any period is likely to be utility maximizing

because choice in the previous period was.

By contrast, in an unstable environment in which the consumer was fre-

quently confronted with prediction errors for their chosen product, our theory

would predict that consumers would predominantly be in an active decision

mode. This relationship between the reliability of the choice environment and

habitual choice not only predicts how much a consumer will be habitual, but

also when a consumer will be habitual.

3 Data

Our dataset is constructed from a household panel of purchases of 6- or 5-ounce

canned tuna consumer packaged goods category, provided by AC Nielsen. We
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Figure 1: Simulation of utilities and doubt stock for two products. The consumer
begins by maximizing utility (choosing product 1), but develops a habit as prediction
errors are small. At time 25, product 2 has a utility increase, but since it is unchosen,
the consumer is unaware and behaviour persists. At time 50, product 1 has a utility
decrease, jolting the consumer out of their habit.
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analyze the top 13 products from the three major brands in the canned tuna

category, which comprise more than 70% of market share. We include only

households who exclusively purchase from the chosen products and who have at

least 3 purchases of canned tuna each year. Our final dataset consists of 12,524

purchase occasions from 627 households between 2006 and 2010. Weekly price

data is obtained from the AC Nielsen store-level scanner panel data, in addition

to product availability and whether the product had a feature or display that

week.

Figure 2: Before and after packaging change for StarKist. In addition to the volume
difference, the new packaging design is more modern and highlights more health-
related information, such as the presence of Omega-3 fats.

In 2008, the three major brands reduced the size of canned tuna from 6

ounces to 5 ounces and changed their package design (Figure 2). Brand 1 was

the first brand to begin introducing its new packaging into stores in July 2008,

followed shortly by the other two brands (Figure 3). The introduction time

varies not only across brands but also across stores.8 These differences lead to

natural variation in the timing of when each consumer is confronted with the

product change.

8Specifically, 53 percent of the variation is explained by different retailers (e.g., Walmart and
Safeway), while only 4 percent by geographic location (i.e., stores’ DMA). This may suggest that the
last contract between a retailer and a manufacturer prior to the downsizing requires the manufacturer
to provide the old package up until a certain date, and the introduction date is determined by when
the old contract ends and a new contract starts.
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Figure 3: Number of stores that introduced new packaging of each brand during the
downsizing event.

Figure 4 depicts the market shares and prices of the the three major brands

during this period. During the can introduction, prices undergo a stark in-

crease which compounds the decrease in can size for consumers, reflecting a

stark instability in the choice environment facing tuna consumers. During this

period, there is a noticeable re-allocation of market share that persists post-

introduction. In the next section, we investigate how consumers respond to this

instability in the canned tuna category, in particular how it impacts habitual

choice behaviour.

4 Empirical Results

4.1 Reduced Form Analysis

We begin with a reduced-form analysis focused on the consumer’s brand-switching

behaviour and price sensitivity around the can change. For each consumer, we
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Figure 4: Market shares and prices for the three major brands

define three time windows: a period prior to the consumer’s first encounter

with a new can (window 1), after the first encounter but before all three brands

have changed can size (window 2), and after the introduction of new can for

all three brands (window 3).9 To assess the effect of the can change in this

reduced-form analysis, we categorize some consumers as habitual buyers based

on their choices in window 1. Specifically, if 95% of a consumer’s choices during

window 1 are of the same brand, we classify the consumer as habitual.10

9The cutoffs of the three time windows can be different across consumers because stores introduce
the new cans at different times and consumers shop in different stores.

10We report the following analysis with cutoffs of 85% and 90% in Appendix B.
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To assess the degree of brand-switching, we run a mixed effect logit regres-

sion with a regressor for repeated choice, allowing for random coefficients on

price and brand intercepts:

uijt =αij + β1I(yi,t−1 = j) + β2I(yi,t−1 = j) ∗ habituali

+ β3I(yi,t−1 = j) ∗ windowit + β4I(yi,t−1 = j) ∗ habituali ∗ windowit

+ γ1pijt + γ2pijt ∗ habituali + γ3pijt ∗ windowit

+ γ4pijt ∗ habituali ∗ windowit + ǫijt (4)

The lagged choice variable I(yi,t−1 = j) identifies whether consumer i repeated

their previous choice. The dummy variable habituali indicates whether con-

sumer i is categorized as habitual or not, while the dummy variable windowit

indicates whether purchase occasion t is in window 1, 2 or 3 for consumer i.

The average price of each brand (across UPCs for that brand) is pijt, and we

allow for normally distributed coefficient correlation for price sensitivity and

brand intercepts.

The estimation results of the mixed effects logit model are reported in Ta-

ble 1. For non-habitual consumers, the lagged-choice parameter is positive

suggesting some degree of persistence in their choices. However during the can

introduction (window 2), this persistence disappears. For habitual consumers,

the lagged choice parameter is much higher, not surprisingly, since they are de-

fined to be more persistent. However, during (and after) the can introduction,

we observe far less persistence in their choices. At the same time, habitual con-

sumers become far more price sensitive. Together, these reduced-form results

suggest that both brand switching and price sensitivity increased during the

new can introduction, particularly for those habitual consumers whose prior
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purchasing behaviour was highly persistent.

Estimate Std. Error
lagged choice 0.24 0.12 *
lagged choice * window 2 -0.39 0.19 *
lagged choice * window 3 -0.22 0.20
lagged choice * habitual 4.65 0.57 ***
lagged choice * habitual * window 2 -3.20 0.61 ***
lagged choice * habitual * window 3 -3.58 0.67 ***
price -4.03 0.64 ***
price * window 2 0.69 0.46
price * window 3 -0.29 0.55
price * habitual -0.51 1.62
price * window 2 * habitual -3.37 1.67 *
price * window 3 * habitual 0.16 1.76
brand 2 0.02 0.14
brand 3 1.13 0.21 ***
sd: price 1.27 0.15 ***
sd: brand 2 2.35 0.23 ***
sd: brand 3 4.37 0.44 ***
sd: price * brand 2 0.25 0.25
sd: price * brand 3 0.87 0.55
sd: brand 2 * brand 3 -5.94 0.58 ***
Notes: * p < 0.05, ** p < 0.01, *** p < 0.001

Table 1: Mixed Effects Logit Results

Given the simultaneous price increase which accompanied the can introduc-

tion, the variation of both of these variables might be leading consumers to

break their habits. To assess the role of price variation, Table 2 reports an

estimate of price elasticity from our sample conditioned on weeks with price

discounts larger than 30%. Estimates of price elasticity appear to significantly

differ depending on the size of the price change.
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Estimate Std. Error
lagged choice 0.32 0.08 ***
lagged choice * week w/ discount > 30% 0.44 0.22
price -3.74 0.50 ***
price * week w/ discount > 30% -5.80 0.91 ***
brand 2 -0.09 0.15
brand 3 0.97 0.20 ***
sd: price 1.55 0.16 ***
sd: brand 2 2.63 0.24 ***
sd: brand 3 4.68 0.49 ***
sd: price * brand 2 0.27 0.24
sd: price * brand 3 0.80 0.53
sd: brand 2 * brand 3 -6.18 0.59 ***
* p < 0.05, ** p < 0.01, *** p < 0.001

Table 2: Price Elasticity and Discount Level

4.2 Structural Neuro-Autopilot Results

4.2.1 Utility Specification and Choice Likelihood

In our structural analysis, we model the choice of a product (a UPC) over the

time window 2006-2010 spanning the introduction of the new can. Consumer

flow utility for product j is given by

uijt = x′
ijtβi − γipijt + εijt, (5)

where xijt is a vector of product characteristics with utility coefficients βi

(described in Table 3). These product characteristics include a random effect

for each product. The price of a can is denoted pijt with a random coefficient

for the marginal utility of money γi > 0 distributed log-normal. We assume

a product-specific error εijt is i.i.d. across time, individuals and products with

CDF given by the Gumbel distribution. Additionally, in some specifications
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Size the size of the can (in ounces)
New Can Arrival a dummy coding the first month the new can arrives in the store
Feature whether the UPC was featured in store
Display whether a display advertised the UPC in store
Alternative Random Effect a random effect for each product
Brand Time Trend a time-trend for each brand

Table 3: Observables that enter utility specification

we will include a lagged choice term in utility to construct a nested test of the

state-dependent utility model:

uijt = β1I(yi,t−1 = j) + x′
ijtβi − γipijt + εijt, (6)

We also include a random coefficient specification for the threshold param-

eter θ in order to allow heterogeneity in the likelihood that a consumer enters

a habit. We assume θ also follows a log-normal distribution. Our test of the

habit model will therefore encompass a likelihood ratio test on these log-normal

parameters.

The choice probabilities in the model are non-standard since an active

choice is only made if the doubt stock is below threshold. Since the doubt

stock is a function of past choices — past draws of εijt for chosen products —

standard simulation approaches from the unbounded Gumbel distribution can

make the log-likelihood discontinuous in some parameters. Therefore we use

an importance-sampling technique similar to the procedure used to estimate

dynamic Tobit models (e.g., Lee 1999). To guide intuition, if we observe a

consumer switch products, we know the error draw for the previously chosen

product must have arisen within some known range and we can draw this er-

19



ror from a truncated Type 1 extreme value distribution. Importantly, if the

threshold is zero (therefore no choices are made in habit mode) then these

choice probabilities collapse to the standard logit probability. Full details of

the expressions can be found in Appendix A.

To simulate the likelihood, we initialize a consumer’s doubt stock given a

history of price changes faced by that consumer and simulate 500 paths of

error draws to construct simulated doubt stocks.11 The average likelihood is

then maximized with with an adaptive algorithm followed by gradiant descent.

Standard errors are calculated from the outer-product gradiant.

4.2.2 Neuro-Autopilot Estimates

The results from our model estimation are presented in Table 4. In columns (1)

and (2) we present the standard random-coefficients Logit with and without a

lagged choice variable. Columns (4) and (5) present our neuro-autopilot model,

again with and without lagged choice.

In both specification (4) and (5), we find that the density for the habit

threshold (θ) places substantial weight above zero and we can definitively re-

ject a baseline random utility model (1) or (2) in which consumer are actively

comparing utilities on every purchase occasion (LR test of (4) vs. (1), p < 10−8;

LR test of (5) vs./ (2), p < 10−8). While the coefficient on lagged choice in

(2) is positive and significant, we find this model performs worse than even our

baseline autopilot model (∆BIC (4) vs. (2): 461). When we include a lagged

11To be more specific, at each evaluation of the likelihood an initial choice is simulated given
current parameter values and price histories to form the initial doubt stock. This consumer-specific
initialization therefore does not require an assumption that all consumers are either in or out of
habit.
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( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 )
Base Logit w Mix Logit w Base Autopilot w

Parameter Logit Lag Choice Rep Choice Autopilot Lag Choice
Prediction Depr (ρ) - - - 0.48 0.11

( 0.04 ) ( 0.02 )
Doubt Depr (λ) - - - 0.98 0.70

( 0.02 ) ( 0.03 )
Threshold (θ) mean - - - 0.68 0.87

( 0.03 ) ( 0.14 )
Threshold (θ) sd - - - 1.41 2.78

( 0.44 ) ( 1.63 )
Price (γ) mean -5.41 -5.38 -5.86 -6.64 -6.67

( 0.46 ) ( 0.58 ) ( 0.63 ) ( 0.99 ) ( 0.95 )
Price (γ) sd 5.14 4.99 5.51 6.69 6.41

( 0.42 ) ( 0.53 ) ( 0.53 ) ( 0.76 ) ( 0.71 )
Size (ounces) 0.25 0.24 0.29 0.08 0.41

( 0.09 ) ( 0.09 ) ( 0.11 ) ( 0.07 ) ( 0.07 )
New Can Arrival month 0.41 0.47 0.37 0.46 0.57

0.29 ( 0.29 ) ( 0.33 ) ( 0.28 ) ( 0.25 )
Lag Choice - 0.88 - - 0.53

( 0.02 ) ( 0.03 )
Switch Prob - - 0.87 - -

( 0.00 )
Log- Likelihood -14501 -14082 -14145 -13832 -13815
BIC 29305 28475 28601 28014 27988

Table 4: Model Estimates

choice term in our autopilot model (5), we find that the habit threshold is

larger, and the magnitude of the lagged choice coefficient decreases by 40%.

Together, these results suggest that there may be two channels in which choice

persistence arises in consumer purchases, a primary channel through a “naive”

habitual autopilot mode in which choices are automatically repeated, and a

secondary channel through preference complementarity.

To assess the model’s predictions about when consumer are in habit mode, in

column (3) we present a “mixed” version of the logit model in which consumer
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are in habit vs. random utility maximization with some probability that is

independent over purchase occasions. This lies in contrast with our autopilot

model which specifies when habit mode should arise: when observables like

prices and can size are relatively stable. The improved performance of the

autopilot model (4) therefore reflects the timing of habit mode, as specified

by the doubt stock relative to threshold, coinciding with periods of relative

stability in prices and product characteristics.

Conversely, it is the variation in these observables around the time of the

new can introduction that leads to re-optimization. One feature of our habit

model is that we can calculate the expected proportion of consumers in habit

mode at any period, conditional on observables. We present these calculations

for three models in Figure 6. In our preferred specification (5), we calculate

that 12% of canned tuna choices are made in habit mode. During the can

introduction, this percentage drops to 10%.

The parameters governing the reward prediction and doubt stock processes

are also of interest. Since ρ = 0.11 is significantly lower than 1, utility predic-

tions aggregate over many periods rather than just the previous period’s utility.

The depreciation of the doubt stock (λ = 0.70)is also less than 1, suggesting

reward reliability is also tracked over multiple periods. Therefore exiting a

habit involves more than just a direct comparison of utility with the previous

period, rather it involves an aggregation of surprising utility shocks over many

periods (with some decay). This allows the agent to strike a balance between

allowing a single event vs. a sequence of “surprising-enough” events to lead

to a re-optimization; yielding a trade-off between exploration and exploitation

that can balance the cost of collecting utility information on every trial.12 This

12Interestingly, the form of trade-off employed here differs from the standard “ǫ-greedy” approach
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implies that when consumer’s exit habit mode because of a price/reward shock,

they don’t immediately re-enter habit mode upon their next purchase. Rather,

the doubt stock will persist above threshold for a number of periods and the

consumer will actively compare utility information before settling into a new

habit.

5 Conclusion

We have proposed a model of consumer choice which includes a habitual decision-

making mode in addition to preference-based choice. The arbitration of these

in machine learning, in which exploration is simply a random perturbation of behaviour and it
is exploitation that results from a maximization process. In our model, the agent explores via a
maximization process when the environment is unstable, and is persistent it is not.
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two systems is drawn from previous neuroeconomic research on how the hu-

man brain tracks the reliability of reward signals. We estimated this model

on consumer purchases of canned tuna, and we find that the hypothesis of an

active random-utility maximizer on every purchase occasion can be summarily

rejected in favour of a habitual consumer who automates their choices when

the choice environment is stable (∼ 12% of consumption occasions). Moreover,

a majority of the choice persistence in our data is due to habitual automa-

tion rather than direct effects on utility. Though we do still find a role for

past choices to enter utility, the contribution of this term in explaining choice

persistence is smaller, suggesting its role may be over-stated.
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Appendix A Choice Probability

Denote consumer i’s flow utility at time t for product j as

uijt = uijt + εijt.

For simplicity, denote the consumer’s last period choice as k. The consumer

will be in habit mode when

(1− λ)di,t−1 + |uikt − rikt| < θ

⇐⇒ −θ + (1− λ)di,t−1 < uikt + εikt − rikt < θ − (1− λ)di,t−1

⇐⇒ rikt − uikt − θ + (1− λ)di,t−1 < εikt < rikt − uikt + θ − (1− λ)di,t−1

⇐⇒ a < εikt < b.

Otherwise, the consumer will make an active choice.

A.1 Choice probability if no switch is observed

First, we consider the likelihood that a choice is repeated from period t−1 to t.

If the consumer does not switch, there are two possibilities: (i) the individual

is in habit mode (dijt < θ), or (ii) the consumer is not in habit model (dijt ≥ θ)

the previously chosen product has the highest utility in period t. To simplify

notation, we drop the i and t subscripts and denote the previously chosen

product as k.

The first case arises only if εikt are in some range [a, b].

Case i: Here, we need to compute the probability that a < εk < b. Noting
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that the logit CDF is F (ε) = e−e−ε

, this probability is simply:

F (b)− F (a) = e−e−b

− e−e−a

.

Case ii: If the consumer makes an active, choice, her εk draw is out-

side the [a, b] interval and it is above the utilities of all other products: εk >

maxj 6=k{uj − uk + εj}. To compute the choice probability here we will use the

usual trick to compute the logit choice probabilities. Suppose that we know εk.

The probability product k is chosen will then be

∏

j 6=k

F (uk − uj + εk),

and the overall choice probability will be

∫ a

−∞

∏

j 6=k

F (uk − uj + εk)f(εk)dεk +

∫ ∞

b

∏

j 6=k

F (uk − uj + εk)f(εk)dεk.

Let’s consider computing the first integral. We can write this as

∫ a

−∞

∏

j 6=k

F (uk − uj + εk)f(εk)dεk =

∫ a

−∞

∏

j 6=k

exp(− exp(−(uk − uj + εk))) exp(− exp−εk)) exp(−εk)

=

∫ a

−∞

∏

j

exp(− exp(−(uk − uj + εk))) exp(−εk)dεk

=

∫ a

−∞
exp



−
∑

j

exp(−(uk − uj + εk))



 exp(−εk)dεk

=

∫ a

−∞
exp



− exp(−εk)





∑

j

exp(−(uk − uj))







 exp(−εk)dεk.
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Now we can make a change of variables, we will set t = − exp(−εk), dt =

exp(−εk)dεk, where the bounds on t are (−∞,−e−a). Now we rewrite the

integral as

∫ a

−∞

∏

j 6=k

F (uk − uj + εk)f(εk)dεk =

∫ −e−a

−∞
exp



t





∑

j

exp(−(uk − uj))







 dt.

So the choice probability will be

∫ a

−∞

∏

j 6=k

F (uk − uj + εk)f(εk)dεk =
exp

(

t
[

∑

j exp(−(uk − uj))
])

∑

j exp(−(uk − uj))





−e−a

−∞

=
exp

(

− exp(−a)
[

∑

j exp(−(uk − uj))
])

∑

j exp(−(uk − uj))
.

Following the same logic, the second integral should then be

∫ ∞

b

∏

j 6=k

F (uk − uj + εk)f(εk)dεk =
exp

(

t
[

∑

j exp(−(uk − uj))
])

∑

j exp(−(uk − uj))





0

−e−b

=
1− exp

(

− exp(−b)
[

∑

j exp(−(uk − uj))
])

∑

j exp(−(uk − uj))
.
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Hence, the overall choice likelihood in this case will be:

P (don’t switch from k) = e−e−b

− e−e−a

+
exp

(

− exp(−a)
[

∑

j exp(−(uk − uj))
])

∑

j exp(−(uk − uj))

+
1− exp

(

− exp(−b)
[

∑

j exp(−(uk − uj))
])

∑

j exp(−(uk − uj))
.

Note that if a = b, this expression collapses to the standard logit probability.

A.2 Choice probability if a switch is observed

Suppose that the last chosen brand is brand k, and the consumer switches to

brand l 6= k. Then we know an active choice was made. There are two cases

we should consider: (i) εk < a and (ii) εk > b. The choice probability will be

the sum of the probabilities in both cases.

Case i: Again, we will treat εl as known. The main difference in the

conditions on the other error terms is that ǫk must be below both ul − uk + εl

and a. In this case the probability that product l is chosen conditional on its

error is 



∏

j /∈{l,k}

F (ul − uj + εl)



F (min{ul − uk + εl, a}).

Note that the choice probability formula now depends on whether ul−uk+εl < a

or not. So we can write it as the sum of two integrals:

∫ a−(ul−uk)

−∞





∏

j 6=l

F (ul − uj + εl)



 f(εl)dεl+

∫ ∞

a−(ul−uk)





∏

j /∈{l,k}

F (ul − uj + εl)



F (a)f(εl)dεl.

The derivations of the integrals above can be done using similar math to the
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case where we don’t see a switch. In particular, we should get

∫ a−(ul−uk)

−∞





∏

j 6=l

F (ul − uj + εl)



 f(εl)dεl =
exp

(

− exp(−(a− (ul − uk)))
[

∑

j exp(−(ul − uj))
])

∑

j exp(−(ul − uj))
,

and

∫ ∞

a−(ul−uk)





∏

j /∈{l,k}

F (ul − uj + εl)



F (a)f(εl)dεl

= F (a)
1− exp

(

− exp(−(a− (ul − uk)))
[

∑

j 6=k exp(−(ul − uj))
])

∑

j 6=k exp(−(ul − uj))
.

Case ii: Treating εl as known, the difference here is we have both upper

and lower bounds on ǫk. So the choice probability conditional on εl will be





∏

j /∈{l,k}

F (ul − uj + εl)



 (F (ul−uk+εl)−F (b)) =





∏

j 6=l

F (ul − uj + εl)



−





∏

j /∈{l,k}

F (ul − uj + εl)



F (

as long as ul − uk + εl > b, and 0 otherwise. The choice probability here will

be the integral over εl of the terms above from b− (ul −uk) to ∞. Considering

the terms separately, the first term will be

∫ ∞

b−(ul−uk)





∏

j 6=l

F (ul − uj + εl)



 f(εl)dεl.

We know how to evaluate this integral from the derivations above, it will be

1− exp
(

− exp(−(b− (ul − uk)))
[

∑

j exp(−(ul − uj))
])

∑

j exp(−(ul − uj))
.
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The second choice probability will be very similar:

F (b)
1− exp

(

− exp(−(b− (ul − uk)))
[

∑

j 6=k exp(−(ul − uj))
])

∑

j 6=k exp(−(ul − uj))
.

Hence, the overall probability of a switch will be

Prob(switch from k to l) =
exp

(

− exp(−(a− (ul − uk)))
[

∑

j exp(−(ul − uj))
])

∑

j exp(−(ul − uj))

+e−e−a
1− exp

(

− exp(−(a− (ul − uk)))
[

∑

j 6=k exp(−(ul − uj))
])

∑

j 6=k exp(−(ul − uj))

+
1− exp

(

− exp(−(b− (ul − uk)))
[

∑

j exp(−(ul − uj))
])

∑

j exp(−(ul − uj))

−e−e−b
1− exp

(

− exp(−(b− (ul − uk)))
[

∑

j 6=k exp(−(ul − uj))
])

∑

j 6=k exp(−(ul − uj))

Again if a = b, this expression collapses to the standard logit probability.

Appendix B More Reduced Form Results

In this appendix, we conduct robustness tests for the reduced form results in

Table 1 using different definitions of habitual buyers. Previously, we classify a

consumer as a habitual buyer if 95% of a consumer’s choices during window 1

are of the same brand. In Table 5, we report the same analysis results but with

cutoff of 85% (column 1) and 90% (column 2) when defining habitual buyers.

The estimates here are of similar magnitudes and significance as in Table 1.
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( 1 ) ( 2 )
lagged choice 0.19 0.17

( 0.12 ) ( 0.12 )
lagged choice * window 2 -0.30 -0.24

( 0.19 ) ( 0.19 )
lagged choice * window 3 -0.25 -0.17

( 0.21 ) ( 0.21 )
lagged choice * habitual 4.12 *** 3.54 ***

( 0.46 ) ( 0.37 )
lagged choice * habitual * window 2 -2.89 *** -2.28 ***

( 0.51 ) ( 0.43 )
lagged choice * habitual * window 3 -2.96 *** -2.40 ***

( 0.56 ) ( 0.48 )
price -4.17 *** -2.66 ***

( 0.65 ) ( 0.64 )
price * window 2 0.80 0.78

( 0.47 ) ( 0.47 )
price * window 3 -0.21 -0.27

( 0.56 ) ( 0.57 )
price * habitual -0.51 -1.81

( 1.29 ) ( 1.17 )
price * window 2 * habitual -3.21 * -3.02 *

( 1.37 ) ( 1.24 )
price * window 3 * habitual 0.12 0.28

( 1.43 ) ( 1.27 )
brand 2 0.00 0.08

( 0.15 ) ( 0.14 )
brand 3 1.13 *** 1.10 ***

( 0.21 ) ( 0.19 )
sd: price 1.31 *** 1.28 ***

( 0.15 ) ( 0.14 )
sd: brand 2 2.33 *** 2.43 ***

( 0.23 ) ( 0.28 )
sd: brand 3 4.38 *** 3.59 ***

( 0.45 ) ( 0.40 )
sd: price * brand 2 0.28 0.68 **

( 0.24 ) ( 0.25 )
sd: price * brand 3 0.79 -1.16 *

( 0.53 ) ( 0.58 )
sd: brand 2 * brand 3 -5.84 *** -7.41 ***

( 0.57 ) ( 0.81 )
Notes: Standard errors in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001

Table 5: Mixed Effects Logit w Different Definitions for Habitual Buyers

36



Appendix C Neuro-Autopilot Results for Mul-

tiple Doubt Stocks

The section reports results from a model with multiple doubt stocks as originally

specificed in Landry et al. (2021). Specifically, there is a doubt stock formed

for each product,

dj,t =















(1− λ)dj,t−1 + |uj,t − rj,t|, if yt−1 = j

(1− λ)dj,t−1 + α, otherwise

(7)

with 0 ≤ λ ≤ 1. Under (7), the doubt stock associated with the consumer’s

choice in the previous period is updated based on the magnitude of the current

reward prediction error: |uj,t − rj,t|. For products that were not chosen in the

previous period, the doubt stock is instead updated with the addition of the

constant α > 0. Thus, the consumer’s level of doubt in a reward prediction

may also also increase as a result of not choosing the associated product, as

this reward prediction has not recently been “tested” against utilities.

Behaviour is then determined by a comparison of the doubt stock for the

previously chosen product

yt =











yt−1, dyt−1,t < θ,

arg max
j∈{1...J}

{ujt}, dyt−1,t ≥ θ.
(8)

Results for this model are reported in Table 6. In columns (1) and (2)

we present the standard random-coefficients Logit with and without a lagged

choice variable. Columns (4) and (5) present our neuro-autopilot model, again

with and without lagged choice.
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( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 )
Base Logit w Mix Logit w Base Autopilot w

Parameter Logit Lag Choice Rep Choice Autopilot Lag Choice
Prediction Depr (ρ) - - - 0.42 0.17

( 0.03 ) ( 0.02 )
Doubt Depr (λ) - - - 0.55 0.34

( 0.03 ) ( 0.01 )
Doubt Incr (α) - - - 2.80 2.70

( 0.22 ) ( 0.18 )
Threshold (θ) mean - - - 1.59 2.06

( 0.09 ) ( 0.15 )
Threshold (θ) sd - - - 0.92 2.20

( 0.11 ) ( 0.61 )
Price (γ) mean -5.41 -5.38 -5.86 -6.09 -6.22

( 0.46 ) ( 0.58 ) ( 0.63 ) ( 0.76 ) ( 0.89 )
Price (γ) sd 5.14 4.99 5.51 5.75 6.07

( 0.42 ) ( 0.53 ) ( 0.53 ) ( 0.62 ) ( 0.72 )
Size (ounces) 0.25 0.24 0.29 0.12 0.20

( 0.09 ) ( 0.09 ) ( 0.11 ) ( 0.06 ) ( 0.08 )
New Can Arrival month 0.41 0.47 0.37 0.29 0.33

0.29 ( 0.29 ) ( 0.33 ) ( 0.25 ) ( 0.27 )
Lag Choice - 0.88 - - 0.62

( 0.02 ) ( 0.03 )
Switch Prob - - 0.87 - -

( 0.00 )
BIC 29305 28475 28601 28073 27976

Table 6: Model Estimates

Results are consistent with the single doubt stock model previously reported.

In both specification (4) and (5), we can definitively reject a random utility

model (1) or state-dependent utility (2) in which consumer are actively com-

paring utilities on every purchase occasion (LR test of (4) vs. (1), p < 10−8;

LR test of (5) vs./ (2), p < 10−8). While the coefficient on lagged choice in (2)

is positive and significant, we find this model performs worse thanthe baseline
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autopilot model (∆BIC (4) vs. (2): 402). When we include a lagged choice

term in our autopilot model (5), we find that the habit threshold is larger, and

the magnitude of the lagged choice coefficient decreases by roughly a third.

Overall, the multiple doubt stock models provide a small but significant im-

provement in fit compared to their companion single doubt stock specifications,

but no qualitiative differences. In our preferred specification (5), we calculate

that 11% of canned tuna choices are made in habit mode. During the can

introduction, this percentage drops to 9%.
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Figure 7: Proportion of Habitual Consumers

The main difference between the two specifications is that the multiple

doubt stock model contains an extra parameter, α which determines the steady-

state of the doubt stock (αλ ) when an item is unchosen. When compared to θ

this determines the probability that a consumer immediately re-enters habit
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mode after exiting. We estimate α
λ = 7.94, which corresponds to the upper

tail of the density for θ. This implies that when consumer’s exit habit mode

because of a price/reward shock, they don’t immediately re-enter habit mode

upon their next purchase.
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Figure 8: Estimated density of θ
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