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Abstract

I document the prevalence of pricing frictions among sellers on Airbnb and quantify the ef-
fect of platform policies designed to ameliorate such frictions. Optimal Airbnb prices should
reflect varying demand across nights of stay and changes in the opportunity costs over time
of booking. However, I demonstrate that, compared to the optimum, sellers’ observed prices
are much more uniform across nights and rigid over time. I further show that the degree of
simplicity is the most prevalent among single-listing sellers, is not captured by several alterna-
tive mechanisms, and is most plausibly explained by sellers’ cognitive constraints—a limit on
the complexity of sellers’ pricing strategies. Estimating a structural equilibrium model where
sellers set constrained-optimal prices, I find significant frictions amounting to 14% loss in the
average consumer surplus and 0-15% profit loss across sellers. Lastly, I demonstrate that an
effective remedy is a modified version of the current pricing algorithm that simplifies, but does
not completely take away, sellers’ pricing decisions.
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1 Introduction

“[F]or many hosts, finding the right price for their space can be both time-consuming

and challenging... Even many experienced hosts told us that they find pricing difficult,

especially as seasons change, special events come to town, and more listings emerge

in their neighborhood.”

– Janna Bray, Head of Research for Airbnb.1

Recent attention has focused on the adoption of advanced pricing technologies by online platforms

and their potential effects on market outcomes. A primary motivation for adopting such technolo-

gies is to mitigate the substantial pricing frictions sellers encounter. These frictions often result

in simplistic pricing policies that do not adequately respond to fluctuating market conditions, a

pattern that is more pronounced among amateur sellers, who lack the managerial skills, experi-

ences, or resources to set and maintain optimal prices on their own. Given the prevalence of these

frictions, platforms provide various tools and resources to assist sellers in pricing—including pric-

ing algorithms (e.g., Uber and Airbnb), education and training (e.g., Alibaba),2 and user-friendly

interfaces. Which tools should the platform adopt to remedy the pricing frictions?

In this paper, I measure San Francisco Airbnb sellers’ pricing frictions, examine their under-

lying mechanisms, and explore alternative platform designs using counterfactual experiments. I

first leverage detailed data to document the extent of pricing frictions among sellers. Then, ruling

out alternative explanations, I demonstrate that the primary mechanism is a limit on the complex-

ity of sellers’ pricing strategies—a mechanism I refer to as “cognitive constraints.” Next, with a

structural model where heterogeneous sellers set constrained-optimal prices, I quantify the pricing

frictions’ impact on consumer, seller, and platform surplus. I find an effective remedy that could

alleviate nearly all frictions, which is a platform-provided pricing algorithm that simplifies, but

does not completely take away, sellers’ pricing decisions.

Airbnb sellers face a difficult pricing problem akin to airline and hotel pricing. Optimal Airbnb

prices should be dynamic in nature as they should adjust based on changing opportunity costs

(e.g., nights cannot be sold past the check-in date, so they should go on discount as that date

approaches). Optimal prices should also vary across nights to reflect the different inherent demand

conditions (e.g., nights during a tourist season may sell out quickly, so they should be priced

higher). In sharp contrast to the structure of optimal prices, I demonstrate that most sellers adopt

simple pricing policies that barely respond to changes in opportunity costs or varying demand

1Source: https://airbnb.design/smart-pricing-how-we-used-host-feedback-to-build-personalized-tools/. Accessed
in April 2021.

2See Alibaba’s online seller training videos. https://us.alibaba.com/aste. Extracted in May 2024.
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conditions. I also establish that the simplicity of pricing policies is associated with sellers’ scale

of operation, measured by the number of listings (properties) they operate on the platform. Single-

listing sellers display a significant extent of pricing frictions, and in contrast, sellers who manage

more listings adopt considerably more sophisticated pricing policies. The extent and heterogeneity

of pricing frictions resembles firm heterogeneity in the managers’ skills and sophistication, as

documented by the previous literature (Goldfarb and Xiao, 2011; Li et al., 2016; Hortaçsu et al.,

2019).

I interpret the primary source of pricing frictions as sellers’ “cognitive constraint”—a limit in

their inherent ability to entertain and adopt sophisticated pricing strategies. I present additional

evidence to rule out several canonical economic explanations. One might imagine that adopting a

sophisticated pricing policies requires fixed investments that only multi-listing sellers are willing

to incur (such as hiring a manager), or information about the market that can be obtained through

learning, or efforts to operate the pricing interface to manually set prices. However, leveraging

within-seller variation in the number of listings, years of experience, and the introduction of a

new feature in the pricing interface, I show that these changes predict no or little price variation.

Therefore, I interpret the primary source of pricing frictions as sellers’ cognitive constraint, and, by

implication, the focus of platform remedies should be to provide direct assistance to seller pricing

using an algorithm.

Next, I estimate a structural equilibrium model to quantify the extent of pricing frictions and

to explore counterfactual platform designs aiming at mitigating such frictions. The demand side

builds on the literature on dynamic pricing of capacity-constrained products (Williams, 2021; Pan

and Wang, 2021), where a stream of consumers arrive on the platform, each making mixed logit

booking decisions. The supply side extends this literature and characterizes sellers’ constrained-

optimal pricing decisions. In particular, different types of listings each maximizes its own profits

subject to two types of cognitive constraints: a “rigidity” constraint that limits the extent to which

prices can vary over time (a Calvo (1983)-type friction), and a “uniformity” constraint that limits

the extent to which prices can vary across nights. I flexibly estimate seller heterogeneity in their

costs and constraints using an approach similar to Bonhomme et al. (2019).

My estimates reveal that demand is highly seasonal and that consumer composition changes

over the lead time (the number of days until the check-in date for that night), implying that optimal

prices should indeed vary across nights and over time. These optimal prices sharply contrast with

observed prices. Additionally, the estimated price elasticity aligns well with field experimental

evidence presented by Jeziorski and Michelidaki (2019).

Supply-side estimates reveal rich heterogeneity in sellers’ marginal costs and their cognitive

constraints. Only 15% of listings are able to set frictionless prices—that is, prices that vary across

nights and can be adjusted at any time. About 35% of listings face some degree of rigidity con-
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straint but no uniformity constraint, implying that they can adjust prices over time, although at a

lower frequency compared to optimal dynamic pricing. Further, the remaining half of the listings

face total rigidity constraint (cannot adjust prices once set) and, in addition, face different extent

of uniformity constraints that often lead to the use of few price points. One prominent example of

such behavior is uniform pricing (DellaVigna and Gentzkow, 2019)—one price for all nights that

never vary over time—which occurs for about 20% listings. I also estimate the median marginal

cost at $38 per night, on par with the city’s average hourly wage.

How do these pricing frictions affect equilibrium outcomes? I simulate the counterfactual

scenario absent of all pricing frictions. Because prices clear the market for all listings and all

nights, virtually all market participants are better off compared to the status quo: consumer surplus

would be 14% higher, sellers would gain between 0% and 15% profit, and platform gains 2.5%

total revenue.

Given the sizable potential gains, I then ask: what realistic remedies can the platform provide

to improve market outcomes? Given the nature of pricing frictions, I focus on platform’s direct

assistance in providing a pricing algorithm and examine two different platform designs around

this algorithm. The first design is to completely take over pricing decisions using the platform’s

revenue-maximizing algorithm, “Smart Pricing” (Ye et al., 2018). This algorithm maximizes ex-

pected revenue and does not consider sellers’ marginal costs and, anecdotally, often leads to prices

that are lower than what sellers are willing to adopt. I find that, if the platform were to enforce this

algorithm, prices would have been much lower than the market-clearing level, and sellers would

have been worse off—so much so that many would not participate on the platform. I then exam-

ine a second design that leverages the algorithm to simplify, but not take away, sellers’ pricing

decisions. In this design, sellers set one “base price,” and the platform makes algorithmic price

adjustments around this base price. I find that this “hybrid” algorithm can alleviate virtually all

frictions and approach market outcomes in the frictionless scenario. Therefore, ameliorating the

pricing frictions is feasible if the platform uses its technology to simplify, instead of taking away,

sellers’ pricing decisions.

Related literature. The paper’s primary contribution is to the recent stream of literature on pric-

ing frictions. Cho and Rust (2010), Pan and Wang (2021), Leisten (2020), Hortaçsu et al. (2021),

and Garcia et al. (2022) document the lack of price variation in capacity-constrained industries

(rental cars, Airbnb, hotel, and airline) and attribute the frictions to managerial mistakes (Cho and

Rust), price-adjustment costs (Pan and Wang), pricing heuristics (Garcia et al.),3 and organiza-

tional frictions (Leisten; Hortaçsu et al.). DellaVigna and Gentzkow (2019), Hitsch et al. (2019),

3Garcia et al. (2022) document that managers do react to the price recommendation made by hotels’ revenue-
management software. However, the reactions are lagged, suggesting that managers still use heuristics (or face menu
costs).
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Arcidiacono et al. (2020), Strulov-Shlain (2019), and Huang et al. (2020) document grocery prices’

(lack of) response to demand features. Bloom and Van Reenen (2010), Bloom et al. (2019), Gold-

farb and Xiao (2011), and Hortaçsu et al. (2019) study firm heterogeneity and show that firm size

and manager education play a role in firm decision quality.

This paper contributes by presenting evidence that pricing frictions are primarily driven by

cognitive constraints—which are limits on the complexity of pricing policies hosts can adopt—

and by exploring alternative platform designs as a remedy to sellers’ cognitive constraints. The

closest related work is Pan and Wang (2021), who present evidence of Airbnb prices’ rigidity over

the lead time and interpret this rigidity as originating from hosts’ price-adjustment costs. Although

my modeling approach builds on Pan and Wang (2021), my findings are vastly different: I show

that price uniformity across nights is an important ramification of frictions, that the primary source

of frictions is not sellers’ price-adjustment costs, and that a simple revenue-maximizing algorithm

does not improve market outcomes due to the inability to account for seller marginal costs.

This paper also extends the previous literature in building a framework to study capacity-

constrained markets with pricing frictions. The demand side builds on Williams (2021) and Pan

and Wang (2021) but includes a fixed-point algorithm (in line with Goolsbee and Petrin 2004;

Chintagunta and Dubé 2005; Tuchman 2019). The supply side extends this literature to character-

ize sellers’ constrained-optimal pricing decisions.

Finally, the paper is broadly related to the recent discussions on algorithmic pricing, with a

particular focus on pricing algorithms as a platform design that shapes competing sellers’ pricing

strategy (in line with Brown and MacKay, 2019). The closest paper is Filippas et al. (2021),

who docoument considerable seller exit after a decentralized car-rental platform transitioned from

seller pricing to centralized pricing. My paper does not observe such a regime shift, but instead

seeks to understand market participants’ objectives and constraints and uses this understanding

to explore different platform designs. My counterfactual results are in line with Filippas et al..

Also related are Zhang et al. (2021) and Foroughifar and Mehta (2023), who study Airbnb hosts’

adoption of Smart Pricing algorithm.4 Both papers document low adoption rates of the algorithm,

an observation consistent with my observation of lack of flexible pricing by hosts. The paper is

also broadly related to the vast literature on Airbnb and sharing platforms.5

4Zhang et al. (2021) document a racial gap in Airbnb sellers’ adoption of Smart Pricing. Foroughifar and Mehta
(2023) document hosts’ low initial adoption of the algorithm and high subsequent termination rates and explain the
phenomenon using a learning model.

5Pavlov and Berman (2019) present a theoretical model to highlight the tradeoff between platform-centralized
pricing (which internalizes the cannibalization effect between sellers) and pricing-in sellers’ quality differences. Zer-
vas et al. (2017) estimates the impact of Airbnb listings on hotel revenue and demonstrates a sizable substitution
effect, primarily on low-end hotels. Farronato and Fradkin (2018) and Li and Srinivasan (2019) structurally charac-
terize Airbnb and hotels’ demand and supply, emphasizing that Airbnb hosts’ flexibility plays a crucial role because
hotels are capacity constrained. Barron et al. (2020) and Garcia-López et al. (2020) examine the effect of Airbnb
listings on rental and housing prices. Fradkin et al. (2018); Zervas et al. (2020); Proserpio et al. (2018); Zhang et al.
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2 Background and Data

Background. Airbnb is the leading platform in the short-term rental market. Sellers (“hosts”)

list their properties (“listings”) and set prices. Consumers (“guests”) enter city and dates to book

accommodations. They pay a nightly price and a per-booking cleaning fee set by the seller, a

percentage service fee set by the platform, and taxes set by local authorities. In San Francisco

during the sample period, consumers pay a 14% service fee and a 14% lodging tax, and sellers also

pay a 3% platform fee.

I do not observe booking rejections by sellers or cancellations by consumers. Most listings

either support instant booking or respond quickly to requests,6 so consumers do not have to wait

for sellers’ acceptance. Airbnb has a strict cancellation policy during the sample period,7 and Zeng

et al. (2024) estimate the cancellation rate to be low.8

Figure 1 displays Airbnb’s pricing interface. Sellers can set one base price for all nights and

one distinct weekend price for all Fridays and Saturdays. Additionally, they can manually set

nightly prices on the price calendar by first choosing a range of consecutive nights, then entering

a price, and finally clicking “save” to confirm. Once a night’s price is set, it can only be changed

by manual adjustments; changing the base price does not impact prices that are already set. Many

hosts find it cumbersome to set or change nightly prices.9

Airbnb offers “Smart Pricing,” a free-to-use pricing algorithm. Opting in the algorithm gives

Airbnb full control of pricing (see “Set up Smart pricing” in Figure 1).10 Ye et al. (2018), from

Airbnb, describe that the algorithm estimates a reduced-form consumer demand function using

observed prices and solves for the revenue-maximizing prices for each listing.11 Numerous anec-

(2019) study reputation, reciprocity, and image quality on Airbnb.
6Guests can book the preferred listing if the listing supports instant booking (28% listings support instant booking

in my sample). If not, guests can inquire about the listing, and 98% of sellers respond to the inquiry within a day (60%
of sellers respond to requests within an hour).

7During this sample period, Airbnb’s cancellation policy is typically much stricter than hotels. 25% of listings
employ a “flexible” cancellation policy, allowing cancellation 14 days before check-in (or 48 hours after booking if
booked in less than 14 days). The 14% service fee is not refundable (see, e.g., https://www.bnbspecialist.com/airbnb-
service-fee-when-refundable/, accessed in September 2021). Beyond the “flexible” cancellation policy, 32% of listings
employ a “moderate” policy and 43% employ a “strict” policy, further tightening the window in which a refund (net
of service fee) can be issued and increasing the penalty outside of this window.

8Zeng et al. (2024) use high-frequency data to measure cancellations from observations where a listing-night first
becomes unavailable and later becomes available. Although my data are at a lower frequency, I repeat this exercise
and find 3.8% of listing-nights appear to have such a pattern, a number in line with Zeng et al.’s finding, suggesting
that cancellations are infrequent.

9For example, Joanna14, an experienced Airbnb host, voices her frustration: “It is proving TOO time consum-

ing to maintain the pricing using the Airbnb standard [interface]... It is just too basic and does not allow enough

flexibility!” Source: https://community.withairbnb.com/t5/Hosting/Lack-of-seasonal-pricing-forcing-me-to-consider-
leaving-Airbnb/td-p/328832/. Accessed in April 2021.

10There are exceptions: Sellers can override each night’s price in the same way as when they manually sets nightly
prices. They can also set a price floor and ceiling, which bound the algorithm’s price.

11Ye et al. (2018) also describes that the algorithm can potentially adjust the price levels based on sellers’ desired
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dotes suggests that sellers wanted higher prices than what the algorithm sets, and consequently,

most sellers do not adopt the algorithm.12,13 In line with anecdotes, Zhang et al. (2021) and For-

oughifar and Mehta (2023) show that only about 20-30% of sellers ever adopted Smart Pricing and

that most initial adoptors quit using the algorithm within a few months. Further, I conduct inter-

views with practitioners familiar with the business and confirm that Ye et al.’s version of Smart

Pricing is indeed used during the sample period, that the algorithmic prices are indeed close to

revenue-maximizing levels, and that the algorithm’s adoption rate is indeed low.

Beyond Smart Pricing, Airbnb has made other attempts to help with seller pricing. One par-

ticular attempt is a pricing interface change in early 2019, when sellers can set an automated

“last-minute discount.” Section 3.2 discusses this policy in detail.

Data, sample selection, and interpolation. The data come from Inside Airbnb (✐♥s✐❞❡❛✐r❜♥❜✳❝♦♠)

under the CC0 1.0 Universal License. These data cover all listings from a range of cities and are

collected from Airbnb once per month since early 2015. Two datasets are relevant to this research.

The first dataset includes listing characteristics on each sampling date t (including the seller’s iden-

tity, listing features, amenities, location, and average ratings). The second dataset is the calendar

data. On sampling date t, I observe whether each night τ is available at the time. Booking starts up

to one year before check-in, and thus, I typically have 12 monthly observations for each night τ .

If a listing-night is available on t −1 but unavailable on t, I interpret the night as being booked in

this period. If the listing-night is always unavailable for the entire 12-month duration, I interpret

the seller as having a “blocked” night τ; that is, it is unavailable from the start.

I take a subsample of Airbnb listings in San Francisco that focuses on (1) the most popular

listing types (private rooms and single- and two-bedroom apartments), (2) those who allow a stay

duration of three nights or below, and (3) those who offer at least 75% of nights per year. These

criteria result in a sample of 18,054 listings, operated by 12,856 sellers, over a period of 54 months,

and with 30,864,535 observations at the listing-night-sampling date level (see Appendix A).

The monthly sampling rate creates a truncation problem: if the last sampling date is far from the

night of stay, prices might have changed, and the night might be sold, beyond my last observation.

To interpolate the occupancy rate, I leverage the fact that some nights are on (or close to) the

last sampling date and are not subject to the truncation problem. I interpolate the occupancy rate

levels. However, my interviews with practitioners, who are familiar with this matter, suggests that the algorithmic
prices do not deviate much from the revenue-maximizing levels.

12See, e.g., https://www.hostyapp.com/smart-pricing-sets-airbnb-rates-low/. Also see numerous forus discussions
on reddit/r/airbnb.

13Beyond using the platform’s algorithm, sellers can use paid third-party pricing software. Typically, using third-
party interfaces incurs a fee (usually 1% of total revenue) and requires the sellers to set up the software through
Airbnb’s API. Although I do not have direct measures of who uses a pricing software, I later demonstrate that price
variations are low and display clear patterns consistent with the standard price-setting interface, suggesting the majority
of sellers still use the standard interface to set prices.
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by matching each night with a similar night close to the sampling date. To interpolate prices, I

leverage the observation that pricing strategies are highly simplistic for most listings (section 3),

allowing me to fit a simple pricing-policy function for most listings (see Appendix A).

3 Pricing Strategies and Frictions: Empirical Observations

This section presents key empirical findings on pricing frictions and their heterogeneity across

sellers. I demonstrate that most sellers set simple prices that do not respond to demand- and

opportunity-cost differences, whereas a small fraction of them set sophisticated prices that resem-

ble the pricing algorithm. Then, I demonstrate that these frictions are not primarily explained

by sellers’ fixed costs (setting up a pricing system), information costs (learning about demand),

or price-adjustment costs (effort to operate the pricing interface). Instead, I interpret that these

frictions likely arise from an inherent limit on the complexity of some sellers’ pricing strategies,

referred to as their “cognitive constraints.”

3.1 Heterogeneity in pricing strategies

Examples and possible algorithmic pricing. I randomly draw 25 listing-sampling date-level

observations and visualize their prices across nights. Figure 2 (A) shows prices follow strong

uniformity patterns for most of these listings. Eight listings have completely uniform prices, six

listings have weekday-weekend patterns, and most others have large clusters of nights set at the

same price. However, a few listings have significantly higher degrees of price variation.

To contrast these prices, I draw another sample from the subset of listings whose degree of

price variation (detailed later) resides in the top 5%. As shown in Figure 2 (B), these listings have

complex pricing patterns that are difficult to set using the standard interface. Yet, prices do share

common, intuitive patterns: they are highly seasonal, feature a polynomial-like baseline price, and

exhibit clear weekend patterns. One might speculate that these prices are set by pricing algorithms.

Measures of price variability. To formally study pricing patterns, I construct three measures

of price variability. The first measure is the standard deviation of log prices across all nights τ ,

holding fixed listing j and sampling date t:

std
(
log
(
price jτt

))
| j,t . (1)

This measure represents overall price variability. A lower standard deviation represents simpler

pricing policies, and a zero standard deviation corresponds to uniform prices.
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(B) Listings with residual price variation above the 95th percentile
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Figure 2: Pricing patterns of randomly drawn listings

Notes: Prices for 50 randomly drawn listings observed on specific dates. The X-axis is the night of the stay. The top 25 are drawn from all

listings. The bottom 25 are drawn conditional on the residual price variation above the 95th percentile. All prices are the 365 nights on and after the

observation date in the graph title. 10



The second measure examines the degree of price changes over the lead time—the time until

check-in. Optimal Airbnb pricing should adjust dynamically, reflecting the shifting opportunity

cost associated with the lead time. A long lead time indicates the night has ample opportunity to

be booked, allowing the seller to set a high price in anticipation of a buyer with high willingness

to pay. As the lead time diminishes, such opportunity dwindles, and the price should decrease

(holding fixed demand and competition). One measure of dynamic pricing is the average percent

difference between the price in the final month and the initial price, or

E

[

1−
price j,τ,12

price j,τ,1
| j, t

]

. (2)

The third measure assesses the degree of price uniformity across demand shifters. It involves

calculating the percent price premium for summer (July to September), weekend, and holidays,

which represent the extent to which prices capture the underlying demand across nights. I focus

on the summer price premium here and present other measures in the appendix.

Summary statistics. In Table 1, I summarize sellers’ scale of operation (number of listings) and

years of experience in the market, price and occupancy, and different measures of price variability.

I find sizable heterogeneity in scale and experience: The median property is operated by single-

listing sellers with three years of experience, and a quarter of properties are operated by sellers

with at least three listings or at least five years of experience.

I also find considerable heterogeneity across the average occupancy rate and price levels of

sellers. The top quartile of sellers are able to fill their properties at least 87% of the time, whereas

the properties of the bottom quartile are mostly empty. Prices are considerably dispersed: The 75th

quantile of price, at $235, is more than two times that of the 25th quantile at $108.

Further, I find a lack of price variation across nights and over the lead time. The median

standard deviation of price across nights is only about 5% of price, or about $7 at the median price.

Consistent with the low price variation, the median listing has only four distinct price points per

365 nights. In addition, summer prices are less than 0.4% higher for the median listing, and the

last-month (before check-in) prices are 2% lower than the initial price. However, a small fraction

of listings do have significant price variations. For example, a quarter of listings show at least an

11% standard deviation in prices, set at least 16 distinct price points, charge at least a 3.5% summer

price premium, and provide 10% or more last-month discounts.

The lack of price variation over the lead time, for the majority of listings, are consistent with

the degree of price rigidity documented by Pan and Wang (2021). In addition, the lack of price

flexibility across nights further suggests Airbnb hosts’ inability to set prices that reflect demand

differences across nights, in line with Li et al. (2016).
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Table 1: Summary statistics across listings

mean 5 pct 25 pct median 75 pct 95 pct
total number of listings 4.002 1 1 1 3 11
years of experience on Airbnb 3.622 0 2 3.5 5 7
number of nights supplied (per 365 nights) 329 212 303 360 365 365
occupancy rate 0.612 0.045 0.370 0.693 0.872 0.997
price 188 72 108 150 235 410
std. of log price across nights 0.076 0.000 0.000 0.050 0.110 0.263
number of distinct prices (per 365 nights) 16 1 2 4 16 75
(negative of) %last-month discount 0.05 -0.11 -0.01 0.02 0.10 0.31
%summer price premium 0.024 -0.040 -0.003 0.004 0.035 0.158

Notes: All variables are measured at the listing-month level, and then averaged across months for each listing.

3.2 Main explanation: Persistent seller heterogeneity in cognitive constraints

My primary explanation of the extent of heterogeneity in pricing frictions is that sellers face hetero-

geneous cognitive constraints. Some sellers can better process the sophisticated market conditions

and can adopt a sophisticated pricing policy. Other sellers, who are bound by a tight congnitive

constraint, instead adopt simple pricing heuristics. One prominent example of such heuristics is

uniform pricing, where the seller charges one price for all nights regardless of the time of the year

or the lead time.

Surveys to professional managers (e.g., Hall and Hitch, 1939; Noble and Gruca, 1999) doc-

ument that they use simple heuristics such as “cost-plus” pricing. More recently, Hortaçsu et al.

(2019) show empirically that firm size is a strong predictor of the extent to which their bidding

decisions depart from canonical auction models. In my context, most Airbnb sellers are not pro-

fessional managers, operate only few listings, and lack strategic pricing knowledge or managerial

trainings. On the other hand, some sellers operate many listings and, have organized operation

routines, and might even make data-driven decisions. The hypothesis is that degree of simplicity

in a listing’s pricing strategy depends on the seller’s scale of operations—their number of listings.

To examine whether sellers’ number of listings explain their degree of price variation. I regress

listing j’s price variability on seller h’s number of listings,

std(log(price)) jt = β#listinght
I#listinght

+δm( j)t +X jtγ + ε jt , (3)

controlling for neighborhood-sampling time fixed effects (δm( j)t) and observed characteristics (X jt)

to compare among observably similar listings across sellers. X jt includes amenity fixed effects and

fully saturated neighborhood×listing type×number of rooms×max number of guests fixed effects.

Figure 3 visualizes the focal parameters of interest, relegating details to Appendix Table B.1

(A). I find that multi-listing sellers often adopt more sophisticated pricing strategies compared to

12
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Figure 3: Across-seller differences in the degree of price variability

Notes: The bar plots present coefficient estimates of equation (3), with the dependent variable being the standard deviation of log price, the

percentage past-month discount, and the percentage summer price premium. Whiskers are 95% confidence intervals. For the full table, see

Appendix Table B.1 (A).

single-listing sellers. For example, sellers who manage six or more listings display a significant

price variation within each listing, where one standard deviation in the prices across nights is

13.1% of that listing’s price level. This degree of variation is twice as large as that of single-

listing sellers. I observe comparable results when measuring price variability over time, such as

the percentage discount from the previous month, and across different nights of stay, such as the

percentage premium for summer prices.14

One might wonder whether multi-listing sellers face systematically different demand primitives

than single-listing sellers. For example, if multi-listing sellers cater more to seasonal travelers, they

would set seasonal prices to capture this demand variability. In Appendix B.2, I demonstrate that

multi-listing sellers do not face different summer demand shocks, weekend demand shocks, or hol-

iday demand shocks, compared to single-listing sellers. Therefore, the price variability differences

cannot be explained by demand-side factors. One might also wonder whether alternative explana-

tions, other than sellers’ cognitive constraints, can explain the systematic lack of price variability

especially for single-listing sellers. I address several alternative explanations in the subsequent

section.

3.3 Alternative explanations

In this section, I discuss and rule out three canonical alternative explanations. In particular, I

show that the pricing frictions are not primarily explained by sellers’ fixed costs of adopting good

14This result extends Li et al. (2016), who show multi-listing hosts charge more distinct prices conditional on a few
listing characteristics (Table 8). Appendix B.2 further demonstrates multi-listing sellers’ prices are more responsive
to demand shocks, in line with Li et al. (2016)’s Table 9 and Leisten (2020).

13



pricing-decision routines, or their information costs to learn about the market environment, or

menu costs to manually adjust prices using Airbnb’s pricing interface.

Not explained by fixed costs. One might imagine that sellers need to invest fixed costs to set

up a sophisticated decision-making routine, which involves hiring a manager, renting a software

system, or monitoring the market conditions. Those with a small scale of operation might not

find it optimal to incur these costs, and instead, would rather use simple pricing heuristics. To

investigate the fixed costs hypothesis, I estimate the following equation:

std(log(price)) jt = β#listinght
I#listinght

+δm( j)t +X jtγ +αh + ε jt (4)

where, importantly, I control for seller fixed effect αh and exploit within-seller variation in the

number of listings.

If the primary source of pricing frictions is due to fixed costs, sellers who expand to have

additional listings should be more willing to incur these costs. As such, as they expand in scale,

they should adopt sophisticated pricing strategies to all listings. However, I find in Figure 4 (A)

that the price variability, across all measures, shows little responses to changes in the number of

listings within a seller. (Y axis scale is the same between Figures 3 and 4.) This finding suggests

that pricing frictions are not explained by fixed costs to set up a sophisticated decision-making

routine.

Not explained by information costs. One might also imagine that it is costly to obtain infor-

mation about demand or competitor behavior, and sellers might gradually acquire this information

through learning. For example, a seller might learn over time that weekend demand is higher

than weekdays, summer demand is higher than winter, or one has to lower the prices on unsold

nights when the check-in date is approaching. To examine this hypothesis, I estimate the following

equation:

std(log(price)) jt = βtenureht
Itenureht

+δm( j)t +X jtγ +αh + ε jt (5)

which is similar to equation (4) except that the focal variables of interest become seller tenure fixed

effects (the number of years since the seller first listed on Airbnb).

If the primary source of pricing frictions is due to information costs—at least for the infor-

mation that can be acquired through learning—one should expect that within seller, the degree of

sophistication in their pricing policy functions increases with tenure. However, I show in Figure

(4) (B) that sellers, after gaining years of experiences, do not set more sophisticated pricing pol-

icy functions. The overall price variability slightly decrease over years of tenure but the change
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(C) By year (2019-20 is post interface change)
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Figure 4: Within-seller changes in price variability along scale, experience, and time

Notes: The bar plots present coefficient estimates of equation (4), with the dependent variable being the standard deviation of log price, the

percentage past-month discount, and the percentage summer price premium. In panel (A), the independent variables are number of listing bin fixed

effects. In panel (B) they are years of tenure fixed effects. And in panel (C) they are year fixed effects, where the last bin (2019-20) is after the

platform introduced the last-minute discount to the pricing interface. Whiskers are 95% confidence intervals. The scale of Y-axis follows Figure (3)

for each dependent variable (although the support might differ). For the full table, see Appendix Tables B.1 (B) and B.2 (A) and (B).
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is statistically insignificant. The extent of last-month discount barely changes with tenure. And,

whereas I do observe a slightly larger summer price premium in year 2, the increase is small and

does not persist as the seller gains more experience. Therefore, I conclude that the pricing frictions

do not seem to originate from sellers’ initial lack of information about the market environment.

Not primarily explained by menu costs of manual price adjustments. A final alternative ex-

planation is that the pricing interface does not make it easy to implement a sophisticated pricing

strategy, creating costs to set different prices across nights or to adjust them over time. Pan and

Wang (2021) document a lack of price variation over the lead time, interpret the source of this

price ridigity as sellers’ price adjustment costs, but do not exploit variation in the pricing interface

to further test their interpretation. To further test the price adjustment cost hypothesis, I exploit a

pricing interface change in early 2019, when Airbnb added “last-minute discounts” to make price

adjustments easier for sellers.15 This feature allows the seller to set a percentage decrease from

the regular price if the lead time falls below a threshold (set by the seller), thus reducing the menu

costs to adjust prices once for each night of stay.

To investigate this explanation, I estimate

%last-month discount = βyeart
Iyeart

+ X̃ jtγ +αh + ε jt (6)

where the main parameters of interest are year fixed effects βyeart
, and I also control for observable

characteristics X̃ jt and host fixed effects αh. I also examine other measures of price variability.

Only for this analysis, I assume that all differences over time are due to the change in the pricing

interface, thus effectively do not control for other time fixed effects or interactions as I do in other

specifications. While this might be a strong assumption, I perform placebo tests that βyeart
should

not be different across other years before 2019.

If the cost of operating the pricing interface is the primary explanation, one should observe

more dynamic pricing practices after 2019, when the platform made dynamic pricing automatable

using the standard price-setting interface. Figure (4) (C) shows that the pricing interface change

does have a positive effect on the extent of dynamic pricing. However, the effect is modest at

best. The degree of last-month discount goes up from about 3%–4% before 2019 to about 6% after

2019, an increase of two or three percentage points (pp.). This increase in last-month discount is

smaller in magnitude compared to the across-seller differences in Figure 3, which amounts to a

four pp. difference between single- and multi-listing sellers. The amount of last-month discount

15I use google archives to pinpoint the change date as around January 2019, indicated by a surge of discussion about
this feature. A few reports suggest, however, that some hosts received pilot trials of this system in 2018. Although the
official website states that this feature is available for hosts with at least two listings, single-listing hosts also report
having access to this feature.
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is also much smaller than the optimal amount implied by my structural estimates, which is 30%

from Table 3. In addition, I discuss in Appendix Section B.3 that many sellers still do not adopt

dynamic pricing at all after the interface change, including many multi-listing sellers who should

have received notifications about this change. Therefore, although the pricing interface change

does increase the extent of dynamic pricing (and I control for this change in the structural model),

sellers’ cost of operating the pricing interface does not seem to be the primary explanation of the

pricing frictions.

4 Structural model and estimation

How can the platform provide remedies to sellers’ pricing frictions? In order to quantify the impact

of potential remedies, I present and estimate a model of equilibrium demand and supply model,

where consumers choose among Airbnb listings, and sellers decide whether to supply their prop-

erties on the platform and, if so, set constrained optimal prices. The model uncovers demand

primitives and sellers’ distribution of marginal costs, pricing frictions, and fixed costs, which are

primitives crucial for simulating counterfactual market outcomes. Due to computer memory con-

straints, the structural model further focuses on studios and single-bedroom apartments (excluding

two-bedroom apartments) and uses a random 75% subsample. Appendix C discusses model im-

plementation details.

4.1 Consumer demand for Airbnb

Setup. Two types of consumers (k = 1,2) arrive in San Francisco. Consumer i of type k comes

in month t and looks for a listing for night τ in zip code m. Her utility from booking listing j is

uk
i j = δ jq(τ(i))+αk log

(
(1+ r) · p jτ(i)t(i)

)
+ξ jτ(i)t(i)+ εi j. (7)

The consumer does not choose the stay night (τ), market (m), and booking time (t). As such, all

three subscripts are fixed given the consumer identity i (subsequently, notations such as τ (i) are

simplified as τ). δ jq(τ) are fixed effects for listing j in the quarter of the night, q(τ), which absorbs

amenities, reviews, cleaning fee, and other features that vary infrequently. p jτt is the price for

night τ if booked in period t. Constant r represents the percent service fees Airbnb charges on top

of the list price. ξ jτt captures unobserved demand shocks for night τ at time t, which represents,

for example, a game taking place on day τ . Because I use a control function to address price

endogeneity, I parameterize ξ jτt = σ1η jτt +σ2η2
jτt , where η jτt is the error term of a first-stage

price equation, and σ1 and σ2 are additional scale parameters. εi j is a Type-1 extreme-value error

term.
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I normalize ui0 = εi0 if the consumer does not book any listing and takes the outside option.16

With this structure, we have a logit demand at the consumer-type level:

sk
jτt =

exp
(
δ jq +αk log

(
(1+ r) · p jτt

)
+ξ jτt

)

1+∑ j′∈Jmτt
exp
(
δ j′q +αk log

(
(1+ r) · p j′τt

)
+ξ j′τt

) , (8)

where Jmτt is the available set of listings at time t for night τ in zip code m.
Type k consumers arrive at the Poisson rate of λ k

mτt . I assume the arrival rate depends on the
lead time, whether τ is on a weekend or a national holiday, day of the week dw, and month of the
quarter mo (the first month of each quarter is normalized to zero, given δ jq’s). Specifically,

λ k
mτt = γk

0m exp

(

−γk
1 · (τ − t)+ γk

2 · Iholiday(τ)+ ∑
dw=1,...,6

γk
2+dw · IDOW(τ)=dw + ∑

mo∈{2,3,5,6,8,9,11,12}

γk
8+mo · IMOY(τ)=mo

)

.

(9)

Appendix C.2 presents more details on normalization and identification.

Nested fixed-point algorithm and estimation. My sample contains 33,354 listing-quarter-level

intercepts, δ jq’s, which are nonlinear parameters in the model. Jointly estimating them using

maximum likelihood is infeasible, yet omitting them (assuming listings only differ in observed

characteristics) makes demand too restrictive.17

To allow for δ jq’s in the model, I adapt the nested fixed-point algorithm in Goolsbee and Petrin

(2004); Chintagunta and Dubé (2005); Tuchman (2019) and use it to estimate capacity-constrained

demand models (Williams, 2021; Pan and Wang, 2021; Joo et al., 2020; Hortaçsu et al., 2021).

The main idea is to collapse the observed binary occupancy outcomes on the listing-night level to

compute the continuous occupancy rates on the listing-quarter level, and invert the occupancy rates

to back out the fixed effects δ jq. Built on Williams (2021) and Pan and Wang (2021), Appendix

C.2 derives a closed-form expression for the quarterly occupancy rate,

1
|q| ∑

τ∈q

occupancy jτ = s̄ jq

(
δ q

)
:=

1
|q| ∑

τ∈q

(

∑
t

(
1− exp

(
−s1

jτt ·λ
1
mτt − s2

jτt ·λ
2
mτt

))
A jτt

)

. (10)

16Standard with the hotel and airline literature, this assumption imposes that consumers are not forward-looking
and do not wait for prices to change. Empirically, consumers have limited incentives to wait, because prices do not
decrease much, and good listings are usually off the market quickly. In addition, conversations with practitioners
suggest consumers are unlikely to wait for a single listing’s price drop (even if they wait for the platform’s overall
price level to change). As such, it is reasonable for an individual listing’s pricing to assume static demand. However,
this assumption does preclude the platform from considering demand’s reaction to a platform-wide dynamic-pricing
policy. Allowing for dynamic demand is infeasible within this literature’s current framework but is an important future
direction for this literature.

17For example, a vast literature highlights the importance of reputation (e.g., Fradkin et al., 2018). The reputation
effect is consistent with my descriptive evidence that prices tend to increase as the host stays longer on the platform.
Also, Zhang et al. (2019) show image quality plays a role in driving demand for Airbnb listings. Reputation (reviews)
and pictures are two examples of many unobserved demand shifters.
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Denote A jτt as the availability of listing j on night τ at the beginning of month t. The left-hand

side is the observed quarterly occupancy rate. The right-hand side is a closed-form expression of

the occupancy rate, which is a function of all listing fixed effects in the quarter, δ q =
(
δ1q, ...,δJq

)′
,

demand shocks, and other demand parameters.18 Therefore, given each set of nonlinear parame-

ters
(
α1,α2,γ1,γ2,σ

)
, I solve for δ jq’s by the system of nonlinear equations (10), and then use

the solved δ̂ jq’s to compute the likelihood function. I then find the nonlinear parameters that max-

imizes the log likelihood.

Uniform-pricing instrument (control function). Price p jτt might be endogeneous to unob-

served demand shifters ξ jτt . These demand shifters potentially capture unobserved local events

on night τ or other changes within a listing-quarter. To identify the price coefficient, I leverage the

extent of pricing frictions in this market. The main idea is that prices are often set uniformly and

adjusted in “batches.” In particular, far-apart nights, say, τ ′, might change prices in the same way

as focal night τ only because it is convenient for the seller to set one price and adjust this price

at the same time. In other words, pricing frictions create supply-side co-movements in prices for

otherwise unrelated nights.

Based on this idea, for each focal night τ , I construct the average price for nights τ ′ in different

quarters of τ . For each τ ′, I further use the price in the previous sampling month (i.e., p jτ ′,t−1) to

guard against simultaneity. I show in Appendix D that this “uniform pricing” instrument strongly

predicts prices, with an excluded-variable F-statistic on the order of 10,000 in linear specifications

with the same set of controls as the structural model. I also show this instrument produces very

different results from using the lagged price as an instrument, with the latter potentially endogenous

to time-invariant unobservables on each night (e.g., events on given dates). This instruments are,

to my knowledge, new to the literature on demand estimation and might have broader applicability

beyond Airbnb, given the prevalence of uniform prices driven by supply-side frictions (DellaVigna

and Gentzkow, 2019; Adams and Williams, 2019; Hitsch et al., 2019).

Given the nonlinear demand model, I adopt a control function approach similar to Petrin and

Train (2010) in which I allow prices to be a function of observables x jτt and the uniform pricing

instruments (or strictly speaking, excluded variables) z jτt , or

p jτt =
(
x jτt ,z jτt

)
·φ +η jtτ . (11)

I estimate this first stage, obtain the residual η̂ jτt , and proxy demand shocks using a quadratic

18Availability A jτt is known in the data during estimation. The fixed point (10) can be solved quickly because A jτt

is known (different from Tuchman, 2019, who needs to simulate individual states). In the counterfactual, while I need
to forward-simulate availability A jτt , the δ jq’s have been solved (and demand parameters have been estimated), and
one does not need to repeat the fixed-point algorithm.
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specification of this residual (ξ̂ jτt = σ1η̂ jτt +σ2η̂2
jτt). This approach implicitly assumes prices

fully capture unobserved demand factors ξ jτt .

4.2 Pricing decisions

I characterize each listing’s pricing decision as a constrained optimization problem, where the list-

ing maximizes expected profits within the bounds of “cognitive constraints.” These constraints

may limits the listing’s ability to adjust prices flexibly over the lead time and to set flexible prices

across different nights. For the sake of model tractability, I assume that adjusting prices dynami-

cally (e.g., responding to changes in market structure or opportunity costs) is a more sophisticated

task than setting prices to reflect stable demand factors (e.g., charging a summer price premium).

This assumption enables me to categorize a listing’s pricing decision into two distinct types. The

first type sets prices independently for each night, but may face “rigidity constraints” – i.e., have

limited opportunities to adjust prices over time. The second type is unable to adjust prices for each

night and may also face “uniformity constraints” – i.e., have limited flexibly how prices can vary

across different nights.

First, establish notations for each listing’s residual demand and profits. Denote the probability

that at least one consumer books listing j for night τ during month t as q jτt . Denote the consumer’s

inclusive value for choosing all listings other than j as ω jτt (Pan and Wang, 2021), which represents

the set of alternatives that competes with listing j. Also, define π jτt as the static flow profit of listing

j if night τ is booked in month t:

π jτt

(
p,ω jτt

)
= q jτt

(
p,ω jτt

)
·
(

p · (1− f )− c j

)
, (12)

where f = 0.03 is the percent platform fee for sellers and c j is the marginal cost per night. In what

follows, I characterize the two pricing types in order.

Dynamic pricing with rigidity constraints. I start by characterizing the first pricing type: op-

timal nightly prices that are determined by a finite-horizon dynamic-pricing problem whereby the

seller faces rigidity constraints. I assume sellers draw a chance to set prices with probability µ j,

following the classical Calvo (1983) model of price rigidiity. Thus, observed price path follows

p
dynamic
jτt =







p∗jτt probability µ j

p
dynamic
jτ,t−1 probability 1−µ j

, (13)

where p∗jτt is the optimal price when the seller has the opportunity to re-optimize prices (with

probability µ j), and p
dynamic
jτt is the observed prices. I assume sellers hold rational expectations on
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the trajectory of residual demand (driven by the market structure) and opportunity costs, as well

as the possibility that they might not adjust prices in some future periods. Therefore, if the seller

draws an opportunity to re-optimize prices, she solves for the dynamically optimal p∗ by,

max
p

π jτt

(
p,ω jτt

)
+
(
1−q jtτ

(
p,ω jτt

))
E
[
Vjτ,t+1

(
p,ω jτ,t+1

)
|p,ω jτt

]
; (14)

that is, the seller balances current profit π jτt

(
p,ω jτt

)
, which depends on the probability that night

τ can be rented out now, and future value Vjτ,t+1, which is multiplied by the probability that night

τ remains on the market. The value Vjτ,t+1, and thus optimal dynamic price p∗jτt , can be solved

via backward induction. The details (including an illustrative example) are presented in Appendix

C.3.

Several properties of this structure warrant discussions. First, Vjτ,t+1 gives an “option value”

for selling night τ in the future, which decreases with lead time τ − t in expectation. Second,

competition enters indirectly through the inclusive value ω jτt (the expected maximum utility if the

consumer does not book listing j). Sellers know the current ω jτt and form rational expectations

about future ω jτt ′ for t ′ > t. I assume sellers take the predicted ω jτt ′ using information up to

t, or Et

[
ω jτt ′

]
.19 The average number of available listings in a zip code is 61 (median is 48).

With many sellers in the market, the model focuses on each seller’s optimization over its residual

demand. Lastly, I assume away multi-product pricing (which would have significantly complicated

the model). Given the large choice sets and that no seller holds a sizable portion of the market,

substitution within a seller can be safely ignored.

Non-dynamic pricing with uniformity constraints. I now move to the second pricing type:

non-dynamic pricing with uniformity constraints. I assume that these sellers cannot adjust prices

over time (µ j = 0). In addition, their flexibility of prices are limited across nights, so they no longer

set prices independently for each night like the first type. Specifically, assume that listing j in

quarter q draws the number of distinct “price bins” from a Poisson distribution, K jq(τ) ∼Poiss
(
ρ j

)
.

Given K jq, the listing divides all nights in the quarter into 1 ≤ K jq ≤ 90 bins and sets one price

for each bin, where each bin includes consecutive nights. A low ρ j indicates a strong uniformity

constraint where the listing tends to use pricing policies with few price points, with limited abilities

to reflect nightly demand shifters in prices.

For tractability, I further assume that given K, the listing will partition the quarter into K clusters

19Specifically, for each seller segment l (introduced later), I estimate

ω jτt ′ = b0l +b1l · t +b2l · t
2 +b3l ·ω jτt +∆ω jτt ′

and take the prediction, Et

[
ω jτt ′

]
, to approximate seller expectations. In past versions, I also assumed perfect foresight

and second-order Markov beliefs, and find similar estimates between these assumptions.
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of consecutive nights based on underlying differences in the average consumer arrival rates λ̄ jτ .

Then, it will set one price for each partition τ ∈
(

τ̄k−1, τ̄k
]

. Therefore, given the K bins, one can

write the pricing problem as one that maximizes the expected profit for each partition:

p̄k
j (K) = max

p

τ̄k

∑
τ=τ̄k−1+1

(
p− c j

)
·E
[
occupancy jτ (p)

]
. (15)

The notation pk
j (K) implicitly ackowledges the partition-specific prices and the exact partitions

(τ̄k−1, τ̄k] change with K. Finally, integrating over the distribution of K, one can summarize the

listing’s optimal non-dynamic prices as

p̄
non-dynm
jτ = E

[

p̄
k(τ)
j |ρ j

]

. (16)

Observed prices as a mixture of the two types. I characterize the observed prices of listing j

as a weighted average between the optimal dynamic price p
dynamic
jτt and the optimal non-dynamic

prices p̄
non-dynm
jτ ,

p jτt = θ j p
dynamic
jτt +

(
1−θ j

)
p̄

non-dynm
jτ . (17)

Here, θ j → 1 (0) will indicate that listing j is the type that sets dynamic (non-dynamic) prices.

Whereas it is difficult to interpret a θ j in-between 0 and 1 as a fixed seller type, I will later show

that many listings have θ j’s close to either 0 or 1.

Identification through an example. Which moments in the data identify sellers’ price-changing

probability (µ j), number of price points (ρ j), and their (dynamic or non-dynamic) type (θ j)? I

illustrate identification using an example of one listing. Fixing demand at the estimated value

and marginal costs at zero, I compute the model-implied prices over time and across nights under

different values of
(
µ j,ρ j,θ j

)
and illustrate that the different parameters map into very different

pricing behavior.

First, assume the listing fully optimizes its prices without any frictions (θ j = 1, µ j = 1). The

right-most panel in Figure 5 (A) presents the distribution of these “frictionless” prices across nights

and over the lead time. The solid line represents median prices in a given month relative to

check-in, and the dashed lines are the 5th and 95th percentiles across nights. The correspond-

ing (right-most) panel in Figure 5 (B) shows the last-month price for each night of the quarter.

Last-month prices vary significantly across nights, ranging between $70 and $210 depending on

the listing’s residual demand for that night—almost three times between the minimum and the

maximum. Moreover, prices of a given night vary significantly over the lead time. The median

price starts around $110 and goes down as the check-in date approaches, due to the decreasing op-
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portunity to sell. However, prices for highly sought-after nights increase to over $220 one month

before check-in, due to the competitors gradually selling out and thus rising residual demand.

Whereas this pricing-policy function is optimal, it is clearly demanding in the seller’s ability to

make sophisticated pricing decisions.

I then add the rigidity constraints, setting the inaction probability at µ j = 0.25. That is, the

listing can only re-optimize prices in about one-fourth of the months. Shown in the second panel

to the right, prices follow the dash-dot line. The price rigidity smooths out the optimal price

variation over time: the seller does not adjust prices (when she should) in some periods, and when

she can re-optimize prices, her prices preemptively accounts for her to future inactions. Therefore,

the degree of price variation over time identifies µ j.

Next, I examine the sellers who are incapable of adjusting prices over time, and in addition,

face flexibility constraints. That is, I set θ j = 0 and vary the degree of flexibility constraints by

changing K.20 The first four panels from the left of Figure 5 show four examples of non-dynamic

prices: a complex scheme with 20 different nightly prices, and less flexible pricing schemes with

six, two, and one price. Sellers who can set many price points will be able to capture most of the

nightly demand variation, despite not being able to adjust prices over time. Conversely, sellers

who cannot set many price points will set inflexible nightly prices, with many contiguous nights

“lumped together.” The degree of flexibility across nights identifies ρ j.

The above identification arguments do not distinguish between two “knife-edge” cases: one

where the listing is the dynamic pricing type (θ j = 1) but faces full rigidity constraints (µ j = 0),

and another where the listing is the non-dynamic pricing type (θ j = 0) but does not face flexibility

constraints (ρ j is very large). To separate these two types of listings, I leverage sellers’ heteroge-

neous responses to the 2019 launch of “last-minute discount” in the pricing interface. I assume

that this new feature allows dynamic-pricing sellers to adjust prices once in the last month before

check-in, regardless of the value of µ j,21 but it will not affect non-dynamic pricing sellers’ behav-

ior. In the above example, last-minute discount will affect the last-month prices for listings in the

fifth panel (where θ j = 1 and µ j < 1), but not listings in other panels (either those with θ j = 0 or

with θ j = 1 and µ j = 1). In other words, this extra moment draws the line between listings who

would never engage in dynamic pricing and those who would engage in some dynamic pricing but

face significant price rigidity constraint.

Estimation. I follow Pan and Wang (2021) to cluster all listings into segments based on their

observed characteristics and observed actions. The underlying idea is similar to Bonhomme et al.

20I should change ρ j according to the model. But changing K (the realized number of prices) serves as a better
illustration.

21I assume sellers set last-minute discounts in the last month, which is a simplifying assumption, but it agrees with
the pattern shown in Figure B.1.
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(2019), who show such ex-ante clustering can approximate a model with continuously distributed

persistent heterogeneity with a flexible distribution. This method suits my paper because it does

not impose strong shape restrictions on the joint distribution of seller parameters.

I cluster all listings into 150 groups by prices and characteristics. For each listing j, I first

obtain its demand intercept, the number of listings operated by the owner, the listing’s median

price, the price discount in the last two months before check-in, and the difference in its last-

month discount after and before the 2019 interface change. Demand and the number of listings are

important characteristics to control for. The vector of price moments closely resembles my iden-

tification arguments (which is important for the ex-ante split segments to resemble the underlying

heterogeneity; see Bonhomme et al., 2019). I then use hierarchical clustering to group all listings

into 150 clusters.

For cluster l, I estimate cl , µl , and θl using a generalized methods of moment (GMM) approach.

I match the following moments for each cluster l: (1) the median price conditional on months-to-

check-in (m1l , a 12× 1 vector), (2) median changes in last month’s price before and after 2019

(m2l , a scalar), and (3) the median interquartile range of price across weekday nights within the

last month (m3l , a scalar). The choice of moments directly follows my identification strategy

above.22 After estimation, I compute asymptotic standard errors from the variance-covariance

matrix (Hansen, 1982).

4.3 Quarterly participation decisions

Potential seller exit limits the platform’s ability to adopt a market design unfavorable to sellers.

I capture this force using a static entry/exit model. Recall that q jτt denotes the probability that

listing j for night τ is booked by any customer in month t. The expected total profit for quarter q

is the sum of expected profit for each night τ in that quarter,23

Π jq = E









∑
τ∈q

12

∑
t=1

(
t−1

∏
ι=1

(1−q jτι)

)

q jτt

︸ ︷︷ ︸

prob. rented in any of the 12 months

· (p jτt · (1− f )− c j)
︸ ︷︷ ︸

markup after platform fee









. (18)

I estimate the fixed costs using maximum likelihood, assuming a listing stays in the market

22The one-step GMM minimizes (m1l ,m2l ,m3l)
′
I14 (m1l ,m2l ,m3l), where I14 are identity weights.

23To estimate the profit for listings that do not currently operate on the market, one needs to infer the demand
intercept δ̂ jq had it operated in the market. For observed listing-quarters, I estimate

δ jq = δ 1
j +δ 2

q +∆δ jq

and project δ̂ jq = δ̂ 1
j + δ̂ 2

q . The R-squared of the above equation is 0.993. The projected δ ’s are only used to estimate
fixed costs.
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(conditional on having entered the market) if it earns positive net expected profit:

Π jq −Fjq > 0. (19)

Here, fixed costs Fjq is the opportunity cost of participating in Airbnb for the quarter. I parameter-

ize this cost as

Fjq = F̄l( j)+ψ1Ipost regulation +ψ2dist j +ψ3dist2j +ψ4ζ jq, (20)

where F̄l( j) is segment l’s fixed cost. Ipost regulation is an indicator for the 2018 San Francisco

regulation, which imposes a mandatory license requirement with an annual fee (and an application

process). dist j characterizes the listing’s distance to Union Square (in miles) and proxies for the

higher forgone rent in downtown San Francisco. ζ jq is a type-1 extreme-value error term, which

implies a binary-logit choice probability for the participation decision.

5 Estimation results

Demand estimates. Table 2 presents demand estimates. I find segment 2 (arriving closer to the

check-in date) is less price sensitive than segment 1.24 The residual from the control function, η jτt ,

has a sizable coefficient, suggesting that prices are endogenous to demand shocks.

The average price elasticity in San Francisco is -2.51. This average elasticity is consistent with

Jeziorski and Michelidaki (2019), who use experimental variation to estimate the price coefficient

for Airbnb in San Francisco. This similarity gives face validity to the control-function approach.

Further, the estimated day-of-week fixed effects suggest a modest weekend demand surge for both

segments. The month-of-the-year fixed effects reflect strong seasonality in the number and com-

position of potential consumers.

These arrival parameters are visualized in Figure 6, which shows the implied segment-specific

arrival rate by time-to-check-in, day of the week, and month of the year, and the corresponding

data moments and model fit. The model predictions matche with the observed sales outcomes

across all three dimensions. These rich demand variations, over time and across different nights,

will be important drivers of optimal prices—ones that a rational, frictionless seller should set.

Marginal costs and fixed costs. Figure 7 summarizes the distribution of marginal and fixed costs

across listings. Recall that supply-side parameters are separately estimated for all 150 segments.

The medain marginal cost is $38 per night (the average is $60), comparable to San Francisco’s

average wage ($36 an hour in 2019). These costs reflect the time to clean the property and com-

24The price-sensitivity difference is consistent with the myopic consumer assumption; if consumers were to wait
for discounts, late adopters should be more price sensitive.
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Table 2: Demand parameter estimates

Segment 1 std err Segment 2 std err

log(price) -3.144 0.010 -2.393 0.006
#customers: baseline (last month) 1.000 2.366 0.022

%∆ by months to check-in -0.389 0.001 -1.567 0.005
%∆ on holidays 0.202 0.011 -0.048 0.017

%∆ February -0.224 0.006 0.581 0.006
%∆ March 0.090 0.006 0.848 0.007

%∆ May 0.195 0.005 0.374 0.008
%∆ June 0.536 0.005 0.226 0.009

%∆ August 0.313 0.005 -0.346 0.011
%∆ September 0.263 0.005 -0.104 0.009
%∆ November -0.244 0.006 -0.281 0.007
%∆ December -0.412 0.006 -0.296 0.007

%∆ Monday -0.004 0.004 -0.063 0.007
%∆ Tuesday -0.007 0.005 -0.026 0.007

%∆ Wednesday -0.003 0.005 0.044 0.007
%∆ Thursday 0.018 0.005 0.096 0.007

%∆ Friday 0.165 0.005 0.204 0.007
%∆ Saturday 0.164 0.005 0.229 0.007

scale of price residual (control fn) 2.561 0.008
scale of price residual squared -0.205 0.010

Notes: Nonlinear parameters from the demand model. Implied δ jq’s are not reported in the table. Number of observations = 16,674,620 (33,354

listing-quarter × 91 check-in days × 12 months = 36,422,568, but only 16.7 million observations are when the listing is available). Log likelihood

at convergence = -3,503,185. Asymptotic standard errors computed from the inverse Hessian matrix.

municate with guests, but might also amortize the property’s depreciation. Marginal costs are

heterogeneous across sellers, with an interquartile range of [$24, $68], suggesting different sellers

might have different hassle of operating on Airbnb. These costs push prices above the revenue-

maximizing level and to different optimal levels for different sellers.

The monthly fixed cost is $5,540 for an average listing in downtown San Francisco. Listings

farther away from downtown have lower fixed costs; for example, three miles away from Union

Square, the average monthly fixed cost is $2,100 (see Appendix Table E.1). These costs are com-

parable to San Francisco’s monthly rent in the sample period.25

Cognitive constraints – rigidity and uniformity constraints. Figure 8 summarizes the distri-

bution of listings’ propensity to use non-dynamic pricing (θ ) and price-setting costs (µ and ρ).

25For example, the city’s average rent in 2018-2019 is about $3,500. Source:
https://sf.curbed.com/2019/10/2/20895578/san-francisco-median-rents-market-census-september-2019. Accessed in
May 2021.
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Figure 6: Customer arrival: model estimates and fit

Notes: Top panels: implied average monthly arrival rate for the two segments over time-until-check-in (left), and the total number of customers over

day of the week (middle) and month of the year (right). Right: empirical and model-implied booking rate (left), which is defined as the probability

of being booked in a given month conditional on availability, and occupancy rate (middle and right), which is defined as the probability of a given

night ever being booked.
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Figure 8: Distribution of price-friction parameters

Notes: Marginal distribution of demand intercept (quality), marginal costs, probability of changing prices, fraction of sellers using dynamic pricing

strategies, fraction using non-uniform pricing strategies, and quarterly fixed costs.

First, the left panel presents the distribution of θ j. 48% listings have θ j > 0.5 (and for most of

them, θ j → 1), meaning they can set prices independently for each night and, in addition, might be

able to adjust prices over time. The rest of listings have θ j ≤ 0.5 (and for most of them, θ j → 0),

suggesting that they are unable to adjust prices and, in addition, might face uniformity constraints.

I now examine these two groups of sellers in turn.

For listings of the dynamic type (with θ j > 0.5), the middle panel presents the distribution of

µ j, the listing’s probability of adjusting prices in each month. µ j is clearly bi-modal. 41% of

listings always adjust prices, and 23% never adjust prices before the last-minute discount feature

was available (and start using the feature after it was introduced). The remaining 36% only get to

change prices in some months, and most change prices rarely. So, although there is a small set of

sellers who set virtually frictionless prices,26 most of the listings who are capable of some dynamic

pricing still face significant rigidity constraints.

For listings of the non-dynamic type (with θ j ≤ 0.5), the right panel characterizes the distribu-

tion of ρ j, the expected number of price bins sellers can charge for each quarter. The average of ρ j

is 5.3. 74% of listings can set five or fewer price points in expectation. The low ρ j suggests that

half of the listings, who already cannot set dynamic prices, also face strong uniform frictions that

lead to the use of very simple pricing policies.

Correlation with observed characteristics. I further project each estimated supply-side param-

eters on observed characteristics to examine what explains differences in pricing strategies. Con-

26One can interpret these “frictionless” listings as using some form of pricing algorithm. Incidentally, they happen
to capture 41%×48% = 20% of the market, about equal the share of hosts who ever used Smart Pricing reported by
(Foroughifar and Mehta, 2023) but likely higher than the stable share of hosts using the algorithm.
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trolling for listing characteristics, the biggest difference between single- and multi-listing sellers is

the extent of cognitive constraints, or whether the seller can set dynamic prices. One standard de-

viation in the number of listings explains 0.23 standard deviations of θ j. In addition, one standard

deviation in the number of listings explains 0.07 standard deviations of marginal costs, 0.11 stan-

dard deviations of ρ j, and −0.01 standard deviations of µ j. This result echoes the earlier finding

that multi-listing sellers set sophisticated pricing strategies. See Appendix Table E.2 for detail.

6 Counterfactual

I start by comparing equilibrium outcomes under the factual scenario (“baseline”) with the fric-

tionless market outcome where all frictions are eliminated (“frictionless”).Although the no friction

scenario is unattainable in practice, it gives an upper-bound estimate of the potential gains from

alleviating pricing frictions. Then, I examine two platform remedies. The first is one in which the

platform enforces a revenue-maximizing pricing algorithm (which approximates “Smart Pricing,”

Airbnb’s pricing algorithm). The second involves a more fundamental redesign of the platform:

the platform provides a flexible price-adjustment function to sellers, and based on these functions,

each seller sets one price and uses the platform-provided price adjustments. In this scenario, the

platform leverages its informational and technological advantage and provides assistance to sellers,

but it does not take away sellers’ rights to set higher-than-revenue-maximizing prices. I compare

profits and consumer surplus across the four scenarios. All calculations are based on the period

from May 2015 to December 2017, the sample period before the San Francisco short-term rental

regulation.

Counterfactual 0: A frictionless market. The first two columns of Table 3 compare the baseline

with the frictionless marketplace, in which prices are set where all pricing frictions are eliminated

(i.e., µ j = 1, θ j = 1, and ρ j is irrelevant in this case). One standard deviation of the price (within

listing, across nights) increases from 4% in the baseline to 6% in the frictionless market for the

median listing. Also, frictionless prices generally decrease over time as the option value for waiting

for additional customers dwindles. I show the percent last-month discount increases to 30% from

2% (i.e., almost completely sticky prices) for the median listing. These two aspects lead to lower

last-month prices and higher occupancy rates.

I further explore who gains and who loses in the frictionless scenario. The median seller gains

as net profits increase from $2,350 to $2,440 per quarter, or by 3.8%. Table 4 further presents the

distribution of within-seller profit changes. 1% sellers lose because they do not face significant

frictions but their competitors can now price more flexibly (and often lower). Still, most sellers

gain from the removing the pricing frictions, and 5th/95th percentiles of the profit gain is [0%,
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15%]. Other than sellers, consumers also gain as their surplus (measured in utils) increases by

14%. The platform obtains a modest revenue gain of 2.5%. Almost all market participants benefit

from eliminating pricing frictions.

Table 3: Counterfactuals: median-seller outcomes, platform profit, and consumer surplus

baseline frictionless full algo. algo.-assist
last-month price 133.66 120.49 99.27 118.49
price dispersion across nights 0.04 0.06 0.09 0.06
last-month discount -0.02 -0.30 -0.38 -0.29
occupancy rate 0.73 0.77 0.90 0.79
seller quarterly profit ($k) 2.35 2.44 2.13 2.42
seller participation rate 1.00 1.00 0.92 1.00
total platform revenue ($m) 2.36 2.42 2.40 2.42
average consumer surplus (util) 4.11 4.69 6.03 4.84

Notes: This table summarizes counterfactual market outcomes in the baseline, frictionless market, and under the two platform remedies. All

seller-level outcomes (last-month price, price dispersion, last-month discount, occupancy rate, and profits) are at the median. Price dispersion is the

standard deviation of log(price) across nights. Last-month discount is the ratio between last-month price and first-month price, minus one. Profit is

the net quarterly profit after substacting fixed costs.

Table 4: Counterfactuals: within-seller profit changes relative to the baseline

frictionless full algo. algo.-assist
fraction who earn negative profit 0.00 0.08 0.00
– who lose relative to baseline 0.01 0.56 0.09
– who gain relative to baseline 0.69 0.31 0.62
profit increase relative to baseline: 5% -0.00 -1.00 -0.02
– 25% 0.00 -0.19 -0.00
– median 0.03 -0.02 0.02
– 75% 0.05 0.02 0.05
– 95% 0.15 0.08 0.14

Notes: This table summarizes within-seller changes in profit in the counterfactual scenarios (relative to the baseline scenario). Fraction who lose

(gain) profit is defined as the fraction of sellers who earn less than 99% profit (more than 101% profit) relative to the baseline, where I put a 1%

buffer to filter out sellers who are close to indifferent.

Remedy 1: Full price control by revenue-maximizing algorithm. Because the primary source

of pricing frictions is sellers’ cognitive constraints, I focus attention on the case where the platform

leverages its data advantages to offer direct assistance in seller pricing. Other remedies, such as

provision of information (such as Alibaba’s training videos) or an easy-to-use pricing interface, are
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unlikely viable alternatives because, as I have documented, sellers do not learn to improve pricing

and show little responses to the existing interface improvement. Therefore, I focus attention on

the platform’s use of pricing algorithms to directly assist seller pricing—either by full or by partial

control of prices.

For the first platform remedy, I simulate the scenario where the platform enforces a listing-

revenue-maximizing algorithm on every listing. To implement this counterfactual, I assume that

each listing maximizes own total revenue but is not constrained by any frictions. From my con-

versation with practitioners, this hypothetical algorithm is similar to the existing “Smart Pricing”

algorithm (Ye et al., 2018), except that in the counterfactual I assume the algorithm takes full

control of all prices.

Column 3 of Table 3 shows that prices are indeed highly variable under the algorithm’s control.

But because the revenue-maximizing algorithm does not factor in seller marginal costs, prices are

also much lower—they are 26% below the baseline and 18% below the frictionless scenario. As

a result, the occupancy rate jumps up to 90%, consumer surplus improve beyond the frictionless

scenario, and platform total revenue is 1.7% above the baseline (although it is below the frictionless

scenario). However, seller profits are significantly lower because many of them have high marginal

costs, which the algorithm does not account for. The median seller now earns only $2,160 per

quarter, down by 11% from the frictionless scenario (and 8% from the baseline). Further, Table 4

shows 8% of sellers now earn negative profits and will exit the platform, and 56% of sellers are

worse off than the baseline.

Therefore, whereas the full price control using a revenue-maximizing algorithm does make

prices more flexible, its main effect seems to be to decrease the overall price level. The lower prices

are closer to revenue-maximizing, which improve consumer surplus and the platform’s payoff,

although at a steep cost of seller profits. The high seller exit rate does limit the platform gain

in this counterfactual and might have an averse long-run impact not captured by the model. The

negative seller impact from this counterfactual also echoes sellers’ resistence to the existing Smart

Pricing algorithm, which, upon seller opt-in, takes full price control and is often reported to set

prices much lower than what the seller would like.27

Remedy 2: Algorithmic price adjustments around seller-determined base prices. The above

analysis suggests that a possible improved platform design is to leverage the algorithm’s ability to

adjust prices following variations in opportunity costs or demand shifters, but leave it on sellers

to determine the base price to reflect their marginal costs. I now simulate such a platform design,

27The counterfactual findings are also consistent with a recent paper by Filippas et al. (2021), who observe that,
when a rental-car platform enforces a revenue-driven pricing algorithm to everyone, more than 30% sellers exit the
platform.
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in which the platform commits to not influence sellers’ preferred price level but still uses the

algorithm to determine the shape of the pricing policy function.

Specifically, the platform redesigns pricing into two stages. In the first stage, the platform

presents a price-adjustment function, amlτt , for market m, listing type l ( j) = 1, ...,150, night-of-

the-quarter τ , and time t (with time-to-checkin τ − t). The platform announces that the consumer

price will be

p jτt = p̄ jq(t)×
(
1+aml( j)τt

)
(21)

and that sellers only set quarterly price p̄ jq(t). In the second stage, sellers observe the now-

committed amlτt and set p̄ jq(t). I assume sellers are able to set p̄ jq(t) because this task is within

even the most stringent cognitive constraint. 28

What would the new equilibrium look like, and how far are we from the first best? The last

column of Table 3 and 4 present the results. First, I find that the median price level is close to (but

a bit lower than) the first best and that the degree of price adjustments over time, price dispersion,

and occupancy rate are almost identical to the first best. On the aggregate, the platform’s new price

function mimicks that of the first best and forges the “shape” of equilibrium prices. As a result of

this similarity, consumer surplus is now 3.2% above the frictionless scenario (due to the slightly

lower prices) and is much higher than the baseline scenario. Sellers, on the other hand, mostly gain

from this change. The median seller profit is 3.0% higher than the baseline. 62% of sellers gain

from this change, and 9% of sellers lose. Virtually no seller chooses to exit. All in all, the crude

platform-assisted pricing scheme helps consumers and most sellers, and it also simplifies seller

decision-making and loads most of the decision burden to the platform.

7 Summary

Pricing in a complex environment is difficult for individual sellers. While providing aid to seller

pricing, the platform might have incentives to steer prices toward its objective. This paper shows

seller-pricing frictions are prevalent on Airbnb. Two mechanisms drive the frictions: sellers’ price-

setting costs and cognitive constraints. This paper estimates that pricing frictions lead to a 14%

consumer welfare loss and a 0%-15% profit losses for sellers. Given the loss, can the platform

ameliorate the frictions in any way? Based on the estimates, a flexible pricing interface alone is

ineffective because significant frictions come from sellers’ cognitive constraints (instead of price-

28To implement this counterfactual, for each j-τ-t, I take the ratio between the first-best prices over the counter-
factual uniform (and time-invariant) prices to compute ã jτt . Then, I average these a’s for each market m, time t, and
for each type l to get amlτt . One might imagine amlτt ’s can be crude if the groups l are crude. One might also imagine
amlτt ’s can be further optimized by the platform. For this counterfactual exercise, I use the crude (and potentially
suboptimal) amlτt ’s to illustrate that improvements can still be gained. Letting the platform strategically choose a’s
will introduce an enormous computational burden and thus is beyond this paper.
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setting costs). Enforcing a revenue-maximizing algorithm will also see limited return, because such

an algorithm does not internalize sellers’ marginal costs, which is driving the incentive conflict

between sellers and the platform. However, I show that a simple market design, which leverages

the platform’s information and technological advantage but still gives sellers important decision

rights, will eliminate almost all frictions and improve market outcomes. Ameliorating the pricing

frictions is feasible with the “right” market design.
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Online Appendix

A Sampling and interpolation details

Sample selection. I focus on Airbnb listings in San Francisco and take a subsample based on

three criteria. First, I condition on listings that require a minimum stay of less than three nights to

eliminate weekly and long-term rental listings.29 Second, I focus on the most popular listing types:

private rooms (38% of all listings in San Francisco), studios and single-bedroom apartments (31%),

and two-bedroom apartments (17%). Lastly, I condition on listing-years when the seller blocks no

more than a quarter of nights. 25% of listings are dropped from this step, which I interpret as

part-time sellers (whose incentives differ from full-time sellers).30 These sample-selection criteria

lead to the main sample described in section 2.

Interpolation of prices. I do not observe the price of the nights that are booked. Fortunately,

most prices do not vary much over time or are characterized by simple price-policy functions,

making interpolating the missing prices feasible.

In the raw data (at the listing-night-sampling-date level), 13.5% of price observations are miss-

ing. I start with the set of listings that charge uniform prices, that is, the same price across all nights

for a given sampling date. For listings with uniform prices, I interpolate all missing prices using

this uniform price.31 This step fills in 3.9% of observations, which is 29% of all missing prices.

Next, I find observations for which all nights’ prices can be characterized by the base price

plus a fixed weekend surcharge. Such observations account for 8% of missing prices, and I fill in

missing prices using the observed, stylized pricing policy. Similarly, I also fill in prices that vary

by calendar month of the night plus a weekend surcharge (11% missing prices) and weekly prices

plus a weekend surcharge (2% missing prices). At this point, half of the missing prices have been

interpolated.

Further, I examine intertemporal variation in prices for the given night. Specifically, I examine

nights for which prices do not vary at all. I find that an additional 15% of missing prices fall into

this category, in which case, I interpolate the price of the night by the constant, observed prices.

By this step, 35% of the original missing-price data are still missing. I now take a stronger

stance and assume missing prices are equal to the last-observed prices. This step fills in 19% of

29On the platform, 67% of listings require a minimum stay of no more than 3 nights, 11% require a minimum stay
of between 4 and 7 nights, 1% require between 8 and 29 nights, and 21% require more than 30 nights. Requiring
a minimum stay of more than 30 nights will put the listing in the long-term rental market and exempt it from the
hotel-lodging tax and other regulations.

30Of the remaining listings, 75% are available for at least 305 nights out of a year, and 50% are available all year.
31In practice, I allow for a 0.5% standard deviation in unexplained price differences, to accommodate the possibility

of a scraper error. This threshold is below $1 at the median price so can be safely ignored.
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missing prices, or 2.7% of all price data.

Interpolation of occupancy. Occupancy could be under-measured because some nights are last-

observed weeks before the stay date, during which time it might be booked, but the booking might

not be observed. I leverage the fact that some nights are on (or close to) the last sampling date and

are not subject to the truncation problem. As such, I interpolate the occupancy rate by matching

each night with an observationally similar night close to the sampling date. To do so, I assume the

expected occupancy rate is the same up to observed characteristics of the date, such as weekday or

month of the year. However, observed occupancy is different because of the difference in trunca-

tion. Given this assumption, I estimate a simple linear regression of binary occupancy for listing j

night τ as a function of the degree of truncation (the number of days between the last observation

and τ) interacted with month of the year and weekday of τ:

occupancy jτ = f
(
truncation jτ ,τ

)
+ ε jτ . (22)

I parameterize function f by quadratic specifications of truncation jτ interacted with a fully satu-

rated set of fixed effects.

The estimated f̂ predicts, given night τ , the expected occupancy if truncation becomes zero.

Denote this difference as ∆occupancy jτ . I find that if the night is truncated by two weeks, the occu-

pancy rate is predicted to be 5 pp. higher, or 8% relative to the observed (truncated) occupancy rate

at 0.66. In the extreme, if the night is truncated by 30 days, the occupancy rate is predicted to be 11

pp. higher. Across all dates, the occupancy rate would have been 0.70 in the absence of truncation,

so the interpolation leads to a 4 pp. increase in measured occupancy rate. Lastly, for nights that are

not occupied by my last observation, I sample binary outcomes from ∆occupancy jτ , which is inter-

preted as “additional occupancy events” in the absence of truncation. I draw additional occupancy

events from this probability.

B Additional descriptive evidence

B.1 Across-seller and within-seller price variability

I present the full tables corresponding to Figures 3 and 4. Table B.1 (A) shows parameter estimates

of equation (3), where I compare different measures of price variation across sellers who operate

different number of listings on the platform. Table B.1 (B) presents estimates of equation (4),

which adds seller fixed effects. Table B.2 (A) and (B) further present estimates of equations (5)

and (6), which examine how the price variability changes by seller tenure and calendar year.
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Appendix Table B.1: Pricing-strategy differences by sellers’ number of listings

(A) Across-seller differences (without seller FEs)

Dependent variable:

std of %prices %last-month discount %summer premium

(1) (2) (3)

2 listings 0.011∗∗∗ −0.014∗∗ 0.004∗

(0.003) (0.005) (0.002)

3-5 listings 0.023∗∗∗ −0.036∗∗∗ 0.016∗∗∗

(0.004) (0.007) (0.003)

6+ listings 0.064∗∗∗ −0.021 0.021∗∗

(0.015) (0.018) (0.009)

baseline (single-listing) 0.067 -0.044 0.019
seller FE no no no
loc.-time/type and amenities FE yes yes yes
Observations 71,565 70,686 70,594
R2 0.413 0.393 0.399

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(B) Within-seller changes (with seller FEs)

Dependent variable:

std of %prices %last-month discount %summer premium

(1) (2) (3)

2 listings −0.0001 0.004 −0.006∗∗

(0.003) (0.005) (0.003)

3-5 listings 0.001 0.005 0.001
(0.004) (0.007) (0.004)

6+ listings 0.020∗∗ −0.003 −0.0002
(0.008) (0.011) (0.010)

seller FE yes yes yes
loc.-time/type and amenities FE yes yes yes
Observations 71,565 70,686 70,594
R2 0.746 0.820 0.727

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Baseline Y is the conditional mean of the dependent variable for single-listing sellers. Panel A focuses on differences between sellers with

different #listings. Panel B controls for seller fixed effects (FEs), focusing on within-seller changes in #listings. Standard errors are clustered at the

seller level.
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Appendix Table B.2: Pricing-strategy differences by seller tenure and year

(A) Changes by tenure (with seller FEs)

Dependent variable:

std of %prices %last-month discount %summer premium

(1) (2) (3)

1 year tenure −0.003 0.007 0.013∗∗∗

(0.003) (0.005) (0.005)

2 years −0.004 0.0003 0.008
(0.004) (0.008) (0.006)

3 years −0.005 0.005 0.011∗

(0.005) (0.010) (0.007)

4+ years −0.010 0.010 0.008
(0.006) (0.012) (0.007)

baseline (0 years tenure) 0.088 -0.071 0.021
seller FE yes yes yes
loc.-time/type and amenities FE yes yes yes
Observations 91,390 90,169 90,139
R2 0.735 0.732 0.701

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(B) Changes by calendar year (with seller FEs)

Dependent variable:

std of %prices %last-month discount %summer premium

(1) (2) (3)

year 2017 0.001 −0.004 0.002
(0.001) (0.003) (0.002)

2018 0.002 0.006 0.010∗∗∗

(0.002) (0.005) (0.002)

2019-20 0.009∗∗∗ −0.026∗∗∗ −0.002
(0.003) (0.007) (0.003)

baseline (2015-16) 0.066 -0.036 0.019
seller FE yes yes yes
loc.-type and amenities FE yes yes yes
Observations 91,486 90,265 90,234
R2 0.712 0.701 0.678

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Baseline Y is the conditional mean of the dependent variable for sellers with 0 years of tenure (panel A) or for the year 2015-16 (panel B).

Standard errors are clustered at the seller level.
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B.2 Multi-listing sellers are more responsive to demand shifters

Given that multi-listing sellers set more flexible prices, a natural follow-up question arises: Can

their prices capture demand shifters better, or is it that they face different demand in the first

place? To answer this question, I collapse data to the level of listing ( j) and nights (τ) and regress

the occupancy rate on salient characteristics of the night, such as the summer dummy (but also

weekend and holidays) and the interaction between that and the log number of listings:

occupancy jτ =α log
(
price jτ

)
+β1 log

(
#listing jτ

)
+β2summerτ +β3 log

(
#listing jτ

)
·summerτ +δ j+λy(τ)+ε jτ .

(23)

I also control for the price, listing fixed effects, and calendar-year fixed effects. Equation (23)

examines whether the occupancy rate is higher during the summer and whether this relationship

differs across sellers with different scales.32 The main parameter of interest is whether multi-listing

sellers face the same summer-demand shifter, that is, to test against β3 = 0. I also estimate a similar

regression with log price as the dependent variable to test whether multi-listing sellers set different

summer price premiums than single-listing sellers.33

Table B.1 finds that, conditional on price, the occupancy rate is 3 pp. higher during the summer,

2 pp. higher during the weekend, and 2 pp. lower during a public holiday.34 In addition, multi-

listing sellers do not face different demand shifters, because β3 is indistinguishable from zero

(except for summer, in which case, multi-listing hosts face a slightly smaller demand increase).

Nevertheless, I reproduce the previous finding that multi-listing sellers set higher prices for the

summer and weekends and lower prices for holidays. These results suggest multi-listing sellers

face the same demand but can set different prices to capture demand. Hence, these results support

the general picture that persistent seller differences create large degrees of heterogeneity in pricing

strategies.

B.3 Additional evidence of sellers’ reaction to the “last-minute” discount

feature

Figure 4 (C) and Table B.2 (B) demonstrate that there is a modest difference in the extent of last-

month discounts offered by sellers after 2019, when the platform launched the automated “last-

32As an aside, the capacity-constrained nature of the market makes optimal prices depend on the level of the occu-
pancy rate (as opposed to only depending on the price elasticity). Holding elasticity fixed, the higher the occupancy
rate, the more likely the listing will be rented out early at a given price, and the higher the optimal price should be.

33This exercise is related to Leisten (2020), who examines hotels’ ability to price in college football games (a
“non-salient” demand shifter) relative to their ability to price in salient shifters, and Huang et al. (2020), who examine
supermarkets’ ability to set prices that capture product-level idiosyncratic demand.

34The lower demand during holidays can potentially be explained by higher supply during holidays, reducing the
residual demand for each listing.
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Appendix Table B.1: Price dispersion across weekends, summer, and holidays

Dependent variable:

occupancy log(price) occupancy log(price) occupancy log(price) occupancy log(price)

(1) (2) (3) (4) (5) (6) (7) (8)

log(listing) 0.010∗∗∗ 0.014∗∗∗ 0.009∗∗∗ 0.020∗∗∗ 0.009∗∗∗ 0.024∗∗∗ 0.010∗∗∗ 0.011∗∗∗

(0.001) (0.0005) (0.001) (0.0005) (0.001) (0.0005) (0.001) (0.0005)

log(price) −0.104∗∗∗ −0.104∗∗∗ −0.097∗∗∗ −0.111∗∗∗

(0.002) (0.002) (0.002) (0.002)

summer quarter 0.033∗∗∗ 0.027∗∗∗ 0.033∗∗∗ 0.027∗∗∗

(0.001) (0.0003) (0.001) (0.0003)

summer × log(listing) −0.008∗∗∗ 0.023∗∗∗ −0.008∗∗∗ 0.023∗∗∗

(0.001) (0.0003) (0.001) (0.0003)

weekend 0.021∗∗∗ 0.028∗∗∗ 0.021∗∗∗ 0.028∗∗∗

(0.001) (0.0003) (0.001) (0.0003)

weekend × log(listing) 0.001 0.013∗∗∗ 0.001 0.013∗∗∗

(0.001) (0.0002) (0.001) (0.0002)

holiday −0.023∗∗∗ −0.007∗∗∗ −0.017∗∗∗ −0.001∗

(0.001) (0.001) (0.001) (0.001)

holiday × log(listing) 0.001 −0.013∗∗∗ −0.0005 −0.010∗∗∗

(0.001) (0.0005) (0.001) (0.0005)

listing FE yes yes yes yes yes yes yes yes
year FE yes yes yes yes yes yes yes yes
Observations 2,347,006 2,347,006 2,347,006 2,347,006 2,347,006 2,347,006 2,347,006 2,347,006
R2 0.340 0.940 0.340 0.940 0.339 0.939 0.340 0.941

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Estimation results of Equation (23).

minute discount” feature. In this section, I further investigate sellers’ adoption of dynamic pricing

after the launch of this feature and the heterogeneity therein.

As an alternative specification, I estimate a regression of log price on a set of lead-time dum-

mies (in weeks) by year, controlling for listing fixed effects δ j:

log
(
price jτt

)
= γτ−t,y(t) · Iτ−t × Iy(t)+δ j + ε jτt , (24)

where γτ−t,y(t) captures the average price path as a function of lead time τ − t and separately by

the year of the sampling date y(t). Figure B.1 shows the change of price profiles by year and

demonstrates the 2019 profile trends down more. This change indicates that sellers, on average,

tend to adopt dynamic pricing more after the launch of “last-minute discount.”

However, a significant lack of dynamic pricing remains after the interface change. If I define
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Appendix Figure B.1: Price paths over lead time, by calendar year

Notes: The average seller’s dynamic-pricing policy by year. These lines come from regression coefficients from Equation (24). The blue solid line

represents 2019 (and early 2020).

dynamic pricing as having a 1% last-month discount or more, 45% of sellers use a dynamic-pricing

strategy, compared to 36% before 2019. While this number certainly indicates an increase in dy-

namic pricing, there are still 55% of sellers—more than half of them—who do not use dynamic

pricing after the interface change (see Table B.2). This indicates that changes in the pricing inter-

face is not the only explanation behind the lack of dynamic pricing. I also argue in the paper that

optimal dynamic pricing would have implied a price profile that trend down more, suggesting that

other explanations might also drive the lack of dynamic pricing.

One further alternative explanation is that some sellers might not know about the new feature.

Whereas many sellers have to activate the last-minute discount themselves, the platform explicitly

pushed this feature, as part of the “professional hosting tool,” to sellers with six or more listings.

Appendix Table B.2 shows that six-plus-listing sellers display the same pattern as others: only

46% of them use dynamic pricing after 2019, versus 38% who use dynamic pricing before. The

lack of awareness to the feature change is not the first-order explanation.
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Appendix Table B.2: Fraction of sellers using dynamic pricing: before and after 2019

2015-2018 2019-2020

All sample 0.36 0.45
Sellers with six or more listings 0.38 0.46

Notes: Share of listings using dynamic pricing, defined as the average price decline per month of lead time being greater than 1% (in the last four

months of lead time).

C Model details

C.1 Demand model detail: aggregation and fixed points

Aggregation. A given day τ of a listing j is listed in market m for at most 12 months (t). In

each month in expectation, λ k
mτt customers of each type k = 1,2 will examine this listing and each

customer has sk
jτt probability of booking it. Define S jτt = 1 if one of the consumers books listing

j, night τ in period t, and A jtτ = 1 if listing j night τ is available at the beginning of period t.

If consumers choose independently,35 ? derives, under a model of homogeneous consumers, the

probability that no customers from a given segment k book the listing if that night is available:

Pr
(
S jτt = 0|A jτt = 1,k

)
= exp

(

−sk
jτt ·λ

k
τt

)

. (25)

Based on this result, the probability that no customer from either segment books the listing is

Pr
(
S jτt = 0|A jtτ = 1

)
= Pr

(
S jτt = 0|A jτt = 1,k = 1

)
·Pr
(
S jτt = 0|A jτt = 1,k = 2

)

= exp
(
−s1

jτt ·λ
1
τt − s2

jτt ·λ
2
τt

)
. (26)

Next, one can write down the expected occupancy rate (i.e., whether night τ of listing j is ever

booked) as

E
[
occupancy jτ

]
= Pr

(
S jτ1 = 1

)
+Pr

(
S jτ2 = 1|A jτ2 = 1

)
·Pr
(
A jτ2 = 1

)
+

Pr
(
S jτ3 = 1|A jτ3 = 1

)
·Pr
(
A jτ3 = 1

)
+ ...; (27)

that is, the occupancy rate is the sum of the probability that the listing is booked in each period, or

the sum of the probability of being available by the start of a period and being booked in the same

35I assume away variations in the choice set within the period t.
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period.

I now discuss the invertibility of this demand system in order to solve for δ jq given the realized

quantity, following Berry et al. (1995) and Berry et al. (2013). Equation (27) outlines the expecta-

tion of the occupancy rate conditional on a night being available at the beginning. One can write

down the sample analog of this expectation,

1
|q| ∑

τ∈q

occupancy jτ =
1
|q| ∑

τ∈q

(
Pr
(
S jτ1 = 1

)
+Pr

(
S jτ2 = 1|A jτ2 = 1

)
·A jτ2 + ...

)
, (28)

which gives the fixed-point equation (10) in section 4.1.

Nested fixed-point algorithm and estimation. I estimate demand using data for each listing j

and for each available night τ over all months t of observations during which the listing is available

(up to 12 months). The probability of the listing being booked in month τ given availability at the

beginning of that month is Pr
(
S jτt = 1|A jτt = 1

)
, given by equation (26). The likelihood function

is

likelihood = ∏
j,τ,t

Pr
(
S jτt = 1|A jτt = 1

)S jτt ·Pr
(
S jτt = 0|A jτt = 1

)1−S jτt . (29)

To compute the objective function at each set of trial parameters (α,σ ,γ), we iterate equation

(10) and solve for all δ jq’s as a function of these parameters. I then use the δ ’s to compute the

likelihood. The outer loop then finds the set of parameters that maximizes the log likelihood.

The fixed-point computation is costly, but the computation time concentrates on many fixed-point

iterations of equations (7)-(10), with mostly the same data (but different parameter values). These

computation tasks can be vastly accelerated in a graphical-processing unit (GPU).

C.2 Demand model detail: arrival rates and its identification

Recall that consumers arrive at the Poisson rate given by equation (9). A challenge is to separate

δ jq(τ) from λ k
mτt , or to separate the customer arrival rate from preferences, given that I only observe

the occupancy rate. One needs normalizations. Specifically, I normalize γ1
0m̄ = 1000 for zip code

94110 (the largest market in terms of total Airbnb rentals). That is, for segment 1, I assume

1,000 customers will arrive in the last month right before the stay date (if the day is not a holiday

or weekend, and on January 1 when the week-of-the-year effect is zero), who consider booking

listings around the Mission District. For every other zip code, I assume segment 1’s last-month

arrival rate is proportional to that of 94110’s, based on the total number of observed Airbnb rentals.

Finally, I assume, for segment 2, λ 2
t,τ = 0 for τ ≤ 4. That is, no segment 2 customers arrive before

eight months to check-in. This normalization should separate the baseline demand intercept from

the customer arrival rate.
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Whereas this parametrization imposes strong assumptions, in past versions, I have implemented

many alternative parameterizations (e.g., assuming different base arrival rates or treating the entire

city (rather than zip codes) as a market). The estimated demand function is quantitatively stable,

perhaps due to the flexible listing-quarter fixed effects.

Further, recall that arrival rates and price coefficients are heterogeneous. Separating the het-

erogeneous preferences and arrival rates relies on the following arguments. First, the distribution

of the timing of when listings are booked identifies γk
1 given the baseline γk

0m. Second, the size of

segment 2 is identified by changes in the sensitivity to price, weekend, and holiday. If the price

sensitivity changes minimally, one rationalizes the data mostly by segment 1. However, if the av-

erage price sensitivity changes considerably, one would rationalize the fraction of segment 2 (i.e.,

γ2
0m/γ1

0m), together with the differences in the price sensitivity (i.e. α2 −α1), by the empirical

pattern of how price sensitivity changes over time.

C.3 Supply: Optimal dynamic pricing with probablistic inaction

Denote the probability of a sale for listing-stay jτ in period t (i.e., the probability that one of the

customers book listing j for night τ , during month t) as

q jτt := 1−Pr
(
S jτt = 0|A jτt = 1

)

= 1− exp
(
−s0

jτt ·λ
0
mτt − s1

jτt ·λ
1
mτt

)
, (30)

and the individual choice probability for each segment k = 1,2 is

sk
jτt =

exp
(
δ jq +αk log

(
(1+ r) · p jτt

)
+η jτt

)

1+ exp
(
δ jq +αk log

(
(1+ r) · p jτt

)
+η jτt

)
+ωk

jtτ

=

(

1+
1+ωk

jτt

exp
(
δ jq +αk log

(
(1+ r) · p jτt

)
+η jτt

)

)−1

, (31)

where ωk
jτt = ∑ j′ ̸= j exp

(
δ j′q +αk log

(
(1+ r) · p j′τt

)
+η j′τt

)
is the sum of exponential utility of

other listings, which is a summary statistic of listing j’s residual demand. Also, the arrival rate

λmτt contains time-invariant states about the night, such as whether it is a weekend, holiday, or the

effect of seasonality. These states, as well as the lead time τ , are important states that drive the

pricing decisions. By comparison, the effect of η jτt is small, and thus, I set all η to zero when

computing optimal prices.
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An illustrating example. I start with a two-period problem. In period T = 12, pricing is static

because the continuation value is zero. Hence, we have

max
p

π jτ,12 (p,ω jτ,12) . (32)

The first-order condition is

p∗jτ,12 =
c j

1− f
−

(
∂q jτ,12

∂ p jτ,12

)−1

q jτ,12. (33)

In period T − 1 = 11, the problem is different in two ways. First, if the listing is not occupied in

this period, it can still be listed in the next period, creating an option value that drives the prices

higher. Second, if the manager gets a chance to act, she knows she might not get another chance to

act next period, making her choices today partially tied to her payoff tomorrow. The value function

in this period reflects these two elements:

Vjτ,11 = max
p

q jτ,11 · (p · (1− f )− c j)+(1−q jτ,11) ·

(µ jE [Vjτ,12|ω jτ,11]+ (1−µ j)E [q jτ,12|ω jτ,11] (p · (1− f )− c j)) , (34)

where, with 1 minus the probability of a sale, the manager gets her expected payoff renting the

listing in month 12 (the option value). However, with probability 1−µ j, she does not get a chance

to change the price and would rent at the same price that she sets now (with µ j, she enters the

optimal decision problem in period 12). Collecting terms and taking the first-order condition, one

gets

(

∂q jτ,11

∂ p
+

∂
((

1−q jτ,11
)
· (1−µ j)E

[
q jτ,12|ω jτ,11

])

∂ p

)

(p · (1− f )− c j)+

q jτ,11 · (1− f )+
(
1−q jτ,11

)
(1−µ j)E

[
q jτ,12|ω jτ,11

]
· (1− f )+

∂
((

1−q jτ,11
)

µ j

)

∂ p
E
[
Vjτ,12|ω jτ,11

]
= 0, (35)

which is closed form once we solve for Vjτ,12.

General problem. In general, one can generally write down the value function as follows, sup-
pressing j and τ subscripts:

Vt = max
p

(1− f )

(

qt +(1−µ)(1−qt)E

[
T

∑
ι=t+1

(1−µ)ι−t−1

(
ι−1

∏
ι ′=t+1

(1−qι ′)

)

qι |ωt

])(

p−
c

1− f

)

+

(1−qt)E

[
T

∑
ι=t+1

(1−µ)ι−t−1

(
ι−1

∏
ι ′=t+1

(1−qι ′)

)

µVι |ωτ

]

. (36)
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This value function can be solved in closed form via backward induction. Denote

∆t = (1− f )

(

qt +(1−µ)(1−qt)E

[
T

∑
ι=t+1

(1−µ)ι−t−1

(
ι−1

∏
ι ′=t+1

(1−qι ′)

)

qι |ωt

])

(37)

and

Ωt = (1−qt)E

[
T

∑
ι=t+1

(1−µ)ι−t−1

(
ι−1

∏
ι ′=t+1

(1−qι ′)

)

µVι |ωt

]

, (38)

and one can write the FOC in a simple term:

p∗t =
c

1− f
−

(
∂∆t

∂ p

)−1(

∆t +
∂Ωt

∂ p

)

. (39)

Counterfactual: pricing with platform-assisted adjustments. What happens when the plat-

form first proposes a price-adjustment function, and sellers set one price for each listing given this

function? This section outlines the seller optimal pricing under this counterfactual scenario.
Denote seller price as p̄ jq and platform’s adjustment factor as amlτt (for market m, listing-type

l, night τ , and based on time before checkin t − τ). The final price before tax and consumer fee is
(1+amlτt) p̄ jq. We can write the seller objective as (suppress m and l)

max
p

∑
τ

(

q jτ,1
(
(1− f )

(
1+amlτ,1

)
p− c j

)
+
(
1−q jτ,1

)
q jτ,2

(
(1− f )

(
1+amlτ,2

)
p− c j

)
+

(
1−q jτ,1

)(
1−q jτ,2

)
q jτ,3

(
(1− f )

(
1+amlτ,3

)
p− c j

)
+ ...+ ∏

ι=1,...,11

(1−q jτ,ι)q jτ,12
(
(1− f )

(
1+amlτ,12

)
p− c j

)

)

=max
p

∑
τ

(
T

∑
t=1

∏
ι≤t−1

(1−q jτ,ι)q jτ,t

(
(1− f )

(
1+amlτ,t

)
p− c j

)

)

.

Taking the first-order condition,we arrive at the “base price” of each listing at

pcounterfactual
j =−

∑τ ∑t

(

(1− f )
(
1+amlτ,t

)

∏ι≤t−1
(
1−q jτ,ι

)
q jτ ,t −

(
∂q jτ,t

∂ p ∏ι≤t−1
(
1−q jτ ,ι

)
−∑ι ′≤t−1

∂q jτ,ι ′

∂ p ∏ι ̸=ι ′
(
1−q jτ,ι

)
q jτ,t

)

× c j

)

∑τ ∑t

(
∂q jτ,t

∂ p ∏ι≤t−1
(
1−q jτ,ι

)
−∑ι ′≤t−1

∂q jτ,ι ′

∂ p ∏ι ̸=ι ′
(
1−q jτ,ι

)
q jτ,t

)

(1− f )
(
1+amlτ,t

)
.

D Uniform-pricing instruments: details

To identify the price coefficient, I leverage the pricing frictions to construct a price shifter based on

prices of other, unrelated nights. Nights that are far from the focal date have plausibly uncorrelated

demand shocks (given listing-quarter fixed effects) but are often set at the same price. This section

demonstrates the strength of the instrument and performs several robustness checks.

I estimate

log
(
price jτt

)
= β 1 log

(
¯price j,−q,t−1

)
+δ 1

jq +Xτγ1 +u jτt , (40)
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where Xτ are weekend, month-of-the-quarter, and holiday indicators, and δ 1
jq are listing-quarter

fixed effects. I use this same set of controls in structural demand estimation. The excluded vari-

able (“instrument”) is the log price of nights in other quarters observed in the previous month,

log
(

¯price j,−q,t−1

)
. Given the first stage, I estimate the second stage of the IV regression,

sale jτt = α2 ˆlog
(
price jτt

)
+δ 2

jq +Xτγ2 + ε jτt , (41)

where sale jτt is an indicator of whether one customer occupies night τ in month t.

I find that, given the set of controls, the log price of other nights is still strongly correlated with

the focal date’s price. The F-statistic of the excluded variable is on the order of 10,000. I find

the second-stage linear-log price coefficient is -0.467, implying an average price elasticity of -2.4,

which is close to the structural estimate. This exercise confirms the source of identification in the

structural model and that the driver of price variation is strong.

I further perform two robustness checks and one placebo test. First, one might be concerned

that the IV recovers the local average price coefficient for uniform-pricing listings, which might

systematically differ from others. To address this concern, I estimate the same first- and second-

stage regressions using a sub-sample of listings with high degrees of price variation. I take the top

quartile of listings with the highest price variation. Column 2 shows this subset gives virtually the

same price coefficient from the IV estimate, implying price-elasticity heterogeneity across listings

is not correlated with the listings’ degree of price variation.

Second, one might be concerned some correlations remain in demand shocks between the

nights that are used to construct the IV and the focal night. I perform a robustness check including

nearby nights to construct the IV, and show the results are robust to excluding these nearby nights.

Column 3 of the table shows the second-stage result is virtually unchanged. This finding suggests

demand shocks are not systematically correlated across nearby nights, and one should not worry

about exactly what cutoff to take when constructing the IV.

Finally, one might wonder how the uniform-pricing IV compares with using lagged prices as

IVs. In this case, a concern about using the lagged price as the IV is the presence of night(τ)-

specific demand shocks. Column 4 shows the result of using the lagged price of the focal night as

the IV for the current price. The second-stage estimate is only one third of the preferred specifi-

cation, implying a price elasticity of about -0.8, and is very different from the uniform-pricing IV

estimate.

E Additional tables
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Appendix Table D.1: Uniform-pricing instruments and alternative specifications

Panel A: first stage

Dependent variable:

log(price)

(1) (2) (3) (4)

log(avg lag price, diff quarter) 0.150∗∗∗ 0.114∗∗∗

(0.001) (0.003)

log(avg lag price, all dates) 0.222∗∗∗

(0.001)

log(lag price, same date) 0.560∗∗∗

(0.0005)

weekend 0.028∗∗∗ 0.100∗∗∗ 0.028∗∗∗ 0.013∗∗∗

(0.0001) (0.001) (0.0001) (0.0001)

holiday −0.0004 −0.007∗∗∗ −0.0005 −0.0004
(0.0003) (0.001) (0.0003) (0.0003)

days to checkin 0.001∗∗∗ 0.002∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.00001) (0.00004) (0.00001) (0.00001)

days to checkin squared −0.00001∗∗∗ −0.00001∗∗∗ −0.00001∗∗∗ −0.00001∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000)

listing × checkin quarter FE yes yes yes yes
week, weekend, holiday FE yes yes yes yes
Observations 3,601,194 498,281 3,601,194 3,471,476
R2 0.970 0.909 0.970 0.979

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Panel B: second stage

Dependent variable:

occupancy

(1) (2) (3) (4)

log(price) −0.467∗∗∗ −0.510∗∗∗ −0.447∗∗∗ −0.137∗∗∗

(0.017) (0.048) (0.012) (0.003)

weekend 0.022∗∗∗ 0.061∗∗∗ 0.021∗∗∗ 0.013∗∗∗

(0.001) (0.005) (0.001) (0.0004)

holiday −0.005∗∗∗ −0.012∗∗∗ −0.005∗∗∗ −0.005∗∗∗

(0.001) (0.003) (0.001) (0.001)

days to checkin −0.010∗∗∗ −0.010∗∗∗ −0.010∗∗∗ −0.010∗∗∗

(0.00004) (0.0001) (0.00003) (0.00003)

days to checkin squared 0.00005∗∗∗ 0.0001∗∗∗ 0.00005∗∗∗ 0.00005∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000)

listing × checkin quarter FE yes yes yes yes
week, weekend, holiday FE yes yes yes yes
Observations 3,601,194 498,281 3,601,194 3,471,476
R2 0.275 0.223 0.276 0.289

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: first and second stage of IV estimates of sales (probability that one consumer rents the listing in a given month) on price, where the price

is instrumented by the average lagged price of nights that are in different quarters of the focal date (“uniform-pricing IV”). Alternative IVs are

compared.
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Appendix Table E.1: Fixed costs: auxiliary parameter estimates

par est std err
post 2018 regulation -0.714 0.077
distance to union sq -2.585 0.174
distance squared 0.615 0.047
scale of the fixed cost error 3.090 0.103

Notes: Reports fixed-cost parameters except for segment-specific average fixed cost (summarized in Figure 8).

Appendix Table E.2: Decomposition of supply-side primitives on listing and seller characteristics

c j ($) se θ j (%) se µ j (%) se ρ j (nr) se
intercept -4.4 8.1 49.0 5.8 74.9 6.3 5.8 1.7
log(nr listing) 6.0 0.4 5.9 0.3 -6.8 0.3 2.7 0.1
host is superhost -0.6 0.6 -0.1 0.4 -2.2 0.5 -0.3 0.1
respond in 1 day -9.3 0.7 0.9 0.5 0.7 0.6 0.0 0.1
instant booking -6.0 0.6 -0.1 0.4 -2.1 0.5 0.2 0.1
flexible cancellation 7.6 0.7 -0.1 0.5 -1.9 0.5 -1.0 0.1

Notes: Regression results of estimated supply parameters on observed listing and seller characteristics. Additional controls not reported in the table

are fully saturated listing type (e.g. entire apartment) × max number of guests × property type (e.g., townhouse) fixed effects, amenity indicators

(TV, internet, parking, washer/dryer, breakfast, allow pets), and length of the listing’s descriptions.

Appendix Table E.3: Supply-side estimates: top 75 segments

% of sample marginal cost ($) std err prob(adjust price) (µ , %) std err expected nr. unique prices (ρ) std err dynamic pricing (θ , %) std err fixed costs ($) std err

group001 2.6 9.5 0.0 100.0 81.5 0.6 0.2 9.1 0.0 6043.5 314.7
group002 2.3 16.4 0.4 100.0 3.8 100.0 1.0 6358.1 307.6
group003 2.2 14.3 0.3 21.4 1.2 100.0 0.4 6271.1 316.2
group004 2.2 16.4 0.4 0.0 0.0 0.2 0.1 6.5 3.2 5175.8 280.6
group005 2.0 24.9 0.4 2.6 0.3 0.2 5.2 4433.9 276.0
group006 1.9 -21.9 0.5 38.9 3.2 0.0 0.2 71.4 2.3 5990.7 286.5
group007 1.9 12.8 0.4 100.0 3.5 0.0 0.4 84.8 1.9 4800.8 260.5
group008 1.9 21.9 0.3 100.0 40.0 0.5 0.3 16.4 3.1 3769.8 264.9
group009 1.9 19.0 1.8 0.0 9.3 0.1 0.5 9.3 14.7 4785.9 308.0
group010 1.7 41.3 0.4 0.1 0.0 0.0 0.0 7316.3 384.9
group011 1.6 90.1 0.4 0.0 0.3 0.0 0.0 76.2 0.5 6306.1 345.7
group012 1.5 68.4 1.6 0.2 0.2 0.0 1.9 6532.7 358.9
group013 1.5 40.9 0.4 100.0 8.7 0.0 0.1 37.1 1.8 4077.1 289.8
group014 1.4 23.1 0.4 100.0 0.8 0.0 1.3 97.4 0.9 3991.7 273.9
group015 1.4 35.8 0.4 100.0 7.0 0.1 0.3 39.4 6.1 3534.2 282.1
group016 1.3 35.5 0.4 10.0 2.1 0.1 1.2 74.6 3.6 4150.2 302.4
group017 1.3 26.6 0.4 3.1 0.5 0.0 0.0 4333.0 319.7
group018 1.2 25.5 0.6 100.0 51.4 13.6 2.8 9.0 0.1 4660.3 331.1
group019 1.2 97.8 0.7 0.0 0.1 100.0 11.3 5075.8 327.0
group020 1.2 49.4 0.4 100.0 53.0 17.3 8.2 5.6 5.5 4755.2 335.2
group021 1.1 32.2 0.3 100.0 7.1 100.0 2.9 5413.9 399.3
group022 1.1 1.0 1.5 8.4 9.3 0.2 0.7 38.0 6.4 5496.1 390.4
group023 1.0 11.6 0.4 100.0 14.5 0.0 0.5 57.1 4.6 3925.4 286.5
group024 1.0 0.1 2.0 100.0 163.3 2.1 0.1 5.9 0.2 7642.2 492.5
group025 0.9 14.5 0.3 100.0 10.0 0.0 0.3 60.0 2.7 3883.8 330.4
group026 0.9 192.4 0.3 78.3 4.4 100.0 2.6 5099.9 380.8
group027 0.9 28.1 0.4 0.1 4.6 0.0 0.2 22.6 3.6 6980.1 441.0
group028 0.9 51.4 0.4 100.0 3.3 31.0 2.7 41.6 2.2 2274.7 328.3
group029 0.9 15.8 0.5 100.0 194.9 2.5 0.5 4.0 6.7 3503.1 349.2
group030 0.9 31.4 0.4 95.6 19.5 31.0 3.9 19.3 4.0 3874.7 356.9
group031 0.9 531.5 0.7 38.9 9.8 31.0 8.0 33.3 10.7 3709.2 515.4
group032 0.9 64.6 0.4 100.0 79.5 12.3 1.2 2.4 1.9 5619.4 386.2
group033 0.9 34.7 0.3 0.0 0.0 3.9 0.7 6.1 1.7 4961.1 439.8
group034 0.9 35.3 0.4 99.9 746.0 0.0 0.4 0.9 7.6 5624.8 447.6
group035 0.9 20.0 0.3 100.0 3.9 0.3 3.9 90.8 2.5 2771.8 332.5
group036 0.9 120.9 0.3 100.0 2.1 100.0 2.3 5117.9 427.5
group037 0.8 -12.0 0.5 0.0 3.6 0.0 0.4 19.9 3.7 5856.9 437.5
group038 0.8 71.5 0.6 0.0 2.2 12.6 103.2 99.0 2.6 6339.8 405.8
group039 0.8 30.4 0.8 0.0 10.4 0.2 0.8 40.3 8.2 4311.9 405.2
group040 0.8 22.9 0.0 100.0 2598.2 0.2 1.1 0.5 36.8 5224.5 454.3
group041 0.8 19.8 0.4 100.0 4.3 15.3 87.1 97.9 2.9 2814.7 352.5
group042 0.8 88.8 0.5 0.0 0.0 31.0 5.5 62.6 1.2 6179.5 417.2
group043 0.8 12.8 0.4 100.0 8.7 2.9 1.3 49.0 7.8 2341.3 361.2
group044 0.8 80.9 0.4 0.2 0.1 0.0 2.8 4530.9 401.4
group045 0.8 49.4 0.5 100.0 6.8 0.0 1.3 76.1 8.1 5897.0 474.3
group046 0.8 26.5 0.4 99.8 1.5 0.1 1.2 92.2 1.4 2224.1 353.3
group047 0.8 30.0 0.5 31.0 7.6 0.0 0.0 4798.0 409.7
group048 0.8 128.3 0.4 99.2 6.6 1.1 0.2 42.8 2.8 4522.8 409.1
group049 0.8 33.8 0.5 99.9 16.7 30.7 3.4 10.6 2.8 3681.3 380.9
group050 0.8 14.6 0.4 100.0 20.5 0.0 0.1 24.5 2.9 5549.7 485.9
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Appendix Table E.4: Supply-side estimates: bottom 75 segments

% of sample marginal cost ($) std err prob(adjust price) (µ , %) std err expected nr. unique prices (ρ) std err dynamic pricing (θ , %) std err fixed costs ($) std err

group076 0.5 19.9 0.4 30.3 3.0 3.3 0.9 42.8 1.6 1964.4 458.8
group077 0.5 91.2 0.0 0.0 0.0 100.0 0.0 6034.0 547.4
group078 0.5 24.0 0.5 100.0 77.8 4.8 0.5 8.3 3.7 3205.6 436.3
group079 0.5 32.4 0.4 61.6 6.1 100.0 7.1 2108.0 436.7
group080 0.5 85.6 0.3 100.0 2.2 100.0 0.8 5267.6 539.9
group081 0.5 9.4 0.5 100.0 11.2 1.5 0.2 34.8 3.2 1903.4 460.4
group082 0.5 232.0 0.6 100.0 42.3 0.9 0.5 17.3 7.7 6764.2 640.8
group083 0.5 47.9 0.3 15.0 17.6 0.0 0.0 11971.8 1181.4
group084 0.5 254.9 0.3 10.8 2.5 100.0 2.4 5629.1 548.4
group085 0.5 226.6 0.3 100.0 0.9 100.0 0.7 4564.6 486.5
group086 0.5 102.6 0.6 10.8 9.4 100.0 2.7 14165.0 2251.5
group087 0.5 27.9 0.4 19.0 1.8 0.0 1.3 90.3 1.4 2476.2 440.5
group088 0.5 34.7 0.4 73.5 1.9 100.0 3.0 2238.0 463.0
group089 0.5 26.9 0.4 50.8 6.8 5.6 0.6 55.7 2.8 4310.2 498.2
group090 0.5 64.4 0.4 7.4 3.1 31.0 35.9 88.9 2.6 3919.2 511.2
group091 0.5 20.6 0.4 92.9 62.3 6.3 1.1 10.5 3.8 3436.2 449.1
group092 0.5 11.9 0.4 34.3 1.8 100.0 0.5 2001.0 445.3
group093 0.5 136.8 0.4 8.6 0.9 0.0 32.6 5416.8 526.4
group094 0.5 36.9 0.7 1.3 3.8 100.0 13.6 3308.1 427.0
group095 0.4 177.1 1.1 0.2 3.4 100.0 4.4 11813.7 1616.3
group096 0.4 19.2 0.4 13.8 3.8 5.1 5.6 68.5 9.7 4114.2 475.6
group097 0.4 78.3 0.4 100.0 1.7 0.0 44.4 99.4 2.6 6101.6 593.1
group098 0.4 101.6 0.8 0.0 1.2 100.0 1.6 3493.3 481.5
group099 0.4 -15.6 0.8 9.1 4.0 0.0 0.1 33.1 2.9 4322.9 516.7
group100 0.4 12.7 0.4 100.0 9.0 0.0 0.3 66.6 2.7 3925.4 286.5
group101 0.4 12.6 0.4 100.0 80.4 14.5 6.7 17.0 11.4 4257.3 520.0
group102 0.4 99.9 0.6 32.7 2.2 100.0 4.0 6343.7 733.0
group103 0.4 14.4 0.5 100.0 0.2 31.0 271.6 99.4 1.3 2146.0 478.0
group104 0.4 25.0 0.4 100.0 80.4 3.7 0.8 8.0 0.1 6719.6 688.3
group105 0.4 67.9 0.4 100.0 0.2 100.0 0.1 8603.4 872.4
group106 0.4 -16.4 0.4 0.0 1.9 0.3 0.1 39.6 1.9 7025.2 594.8
group107 0.3 149.3 0.9 0.0 6.6 0.1 2.9 79.6 6.9 2393.2 480.4
group108 0.3 72.1 0.3 100.0 1.6 100.0 0.6 2790.3 522.5
group109 0.3 25.9 0.4 100.0 2.2 0.0 1.9 78.2 1.1 264.2 632.0
group110 0.3 94.3 0.4 0.0 0.7 100.0 2.0 2853.8 551.2
group111 0.3 65.4 0.4 51.5 2.4 100.0 5.7 2534.6 502.3
group112 0.3 52.8 0.4 78.9 36.5 31.0 6.4 17.2 6.1 3372.8 510.8
group113 0.3 25.0 0.4 0.0 2.6 100.0 0.2 4775.7 640.1
group114 0.3 169.6 0.4 100.0 1.3 16.2 0.9 42.5 0.9 6592.1 751.2
group115 0.3 39.2 0.4 24.4 1.3 0.0 1.5 86.7 2.6 2054.9 553.7
group116 0.3 32.2 0.5 43.8 14.4 99.9 15.0 4049.0 608.1
group117 0.3 95.1 0.4 5.7 0.7 0.0 2.7 4035.3 553.9
group118 0.3 17.2 0.5 100.0 8.8 24.1 14.4 67.3 4.7 3764.1 609.2
group119 0.3 26.7 0.5 100.0 234.7 0.3 0.6 3.7 14.8 13191.7 1854.4
group120 0.3 28.8 0.4 79.3 9.1 28.0 72.2 84.4 8.6 6123.4 736.9
group121 0.3 100.2 0.6 12.3 2.2 100.0 1.5 7983.6 809.5
group122 0.3 9.4 0.4 75.9 4.6 1.4 0.3 59.4 1.7 4741.6 527.9
group123 0.3 98.3 0.5 90.8 0.5 31.0 28.9 97.1 1.4 4037.2 566.8
group124 0.3 57.6 0.7 0.0 6.0 100.0 5.6 -393.4 557.8
group125 0.3 91.8 0.3 100.0 2.7 100.0 0.6 10326.0 1469.7
group126 0.3 -24.7 0.4 2.2 0.6 100.0 0.3 9931.5 766.8
group127 0.3 19.4 0.3 100.0 2.9 100.0 1.1 3206.0 578.5
group128 0.3 182.9 0.4 0.0 1.4 100.0 2.4 12865.9 1481.3
group129 0.2 15.4 0.0 53.9 0.0 4.5 Inf 53.9 Inf 10409.1 900.2
group130 0.2 89.5 0.3 0.1 0.8 100.0 1.2 14664.8 2259.5
group131 0.2 24.9 0.6 90.4 2016.2 25.8 3.5 0.4 1.7 7149.5 903.4
group132 0.2 15.4 0.0 53.9 0.0 4.5 Inf 53.9 Inf 58238.9 52386.7
group133 0.2 95.2 0.4 99.0 0.5 100.0 1.1 4201.5 662.7
group134 0.2 101.2 0.3 20.6 1.5 100.0 1.9 5115.1 826.8
group135 0.2 48.1 0.3 99.9 1.9 8.9 0.7 65.5 0.9 6916.0 746.5
group136 0.2 73.5 0.5 48.4 2.5 100.0 2.3 6162.9 1000.7
group137 0.2 72.8 0.3 100.0 3.4 100.0 2.5 48969.9 52381.5
group138 0.2 38.1 0.4 72.0 1.6 31.0 23.8 94.9 1.1 2686.9 873.9
group139 0.2 -8.3 0.6 67.5 52.2 1.2 0.2 9.6 3.8 1958.5 890.9
group140 0.2 2.2 0.4 96.2 0.5 23.0 39.6 97.4 0.3 5764.3 828.9
group141 0.2 25.9 0.6 100.0 2.8 0.5 75.7 99.7 2.8 3289.5 849.7
group142 0.1 431.7 0.5 90.5 0.9 30.7 23.1 92.6 0.6 6067.1 1253.4
group143 0.1 44.8 0.4 99.9 0.2 100.0 1.4 3695.6 912.9
group144 0.1 99.3 0.4 98.3 0.3 100.0 0.9 4795.0 929.9
group145 0.1 24.0 0.4 77.6 3.3 100.0 3.2 3925.4 286.5
group146 0.1 108.1 0.5 90.6 1.7 31.0 11.1 84.0 2.6 3925.4 286.5
group147 0.1 108.1 0.4 99.8 0.1 100.0 1.2 3925.4 286.5
group148 0.0 901.4 0.0 50.4 0.0 18.4 Inf 51.8 0.0 3925.4 286.5
group149 0.0 140.1 0.4 100.0 0.1 14.5 112.4 99.2 0.2 3925.4 286.5
group150 0.0 -50.0 150.2 100.0 240.2 0.0 0.5 63.5 5.2 3925.4 286.5

Notes: Supply-side estimates for the bottom 75 segments.
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